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ABSTRACT  

A step-by-step evaluation of some current methods for the prediction of parametric rolling is 

presented. In parallel, a continuation method is implemented for the investigation of parametric 

rolling, highlighting the enhanced scope achieved by it. The boundary line that is formed by the 

folding of the curve representing the amplitude of parametric oscillations as function of the 

frequency ratio is discussed in detail.  Several other technical issues are discussed. 
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INTRODUCTION 

Parametric rolling is nowadays perhaps the 

most popular topic of ship stability research 

(Neves 2006). Methods targeting its prediction 

range from simple formulae based on Mathieu-

type dynamics; to numerical codes based on 

detailed ship hydrodynamics. However, the 

true capability of current methods to capturing 

quantitatively the critical features of the 

phenomenon (in deterministic as well as in 

probabilistic sense) is still an open issue.  

Comparisons based on time histories obtained 

by a few simulation runs against experimental 

results are unlikely to be an effective way for 

resolving this, due to the several design and 

operational factors that influence the 

parametric rolling behaviour of ships. 

A systematic investigation that has set its focus 

on the prediction potential of parametric rolling 

by the various available methods is discussed 

in the current paper. The numerical technique 

of continuation of nonlinear dynamics is the 

main vehicle of this investigation. Continuation 

is known to be helpful for tracing efficiently 

the entire set of a system’s stable and unstable 

responses, for detecting safety boundaries and 

in general for predicting critical phenomena. 

One by-product therefore of the current work 

is, better understanding of the value of 

continuation for the study of parametric rolling. 

Some of the issues that have been investigated 

are: a) the nature of the boundary lines that 

confine the principal region of parametric roll 

oscillations and also the dependence of the 

characteristics of the latter upon various 

parameters; b) the accuracy of available 

analytical formulae in reflecting the dynamics 

even within the context of a simple nonlinear 

Mathieu-type model of ship rolling; c) the 

influence on the boundaries of a non-harmonic 

variation ( );GZ tϕ
 
exhibited by a ship due 

wave passage; and d) the effect of couplings 

due to pitch and heave in head seas. 
 

REVIEW OF ANALYTICAL FORMULAE 

In the ITTC (2005) guideline of parametric 

rolling expressions are based on the following 

model: 
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h  is the scaled  GM  fluctuation, defined as 

max min

2

GM GM
h

GM

−
= . In the ABS (2004) guide 

the corresponding equation becomes identical 

to (1), if GM  is interpreted as 
max min

2

GM GM+
 

and the 5
th
-order restoring term is omitted. 

ITTC’s boundary of instability (h threshold) 

refers to infinitesimal perturbations of the 

upright state, therefore nonlinear restoring 

terms do not participate. The proposed 

expression for the first region (principal 

resonance) is:  
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This is the 1
st
-order approximation of the 

Mathieu functions that truly describe the 

boundary.  

Whilst the generation of instability on this 

boundary is in reality a ‘linear’ phenomenon, 

the finite roll amplitude that accrues from the 

loss of stability is critically influenced by 

nonlinearities. Prediction formulae of steady 

parametric rolling appear in the ITTC 

guideline, deduced by the method of harmonic 

balance (Spyrou 2005):  

5 0c = : 











−







 −=
a

h

ac
A

22

3

2 4

4

1
1

3

4 ζ
m

      

(3) 

5 0c ≠ :














−±+−−








±−=

a

h

acc

c

c

c
A

22

5

2

5

3

5

32 4

4

1
1

5

8

5

3

5

3 ζ

 

(4) 

where 2 2
04 ea ω ω= . The m  sign reflects the 

possibility of several stable and unstable states 

coexisting for the same value of a . After 

conversion to common symbols, the ABS 

expression (derived by the method of multiple 

scales) is identical to (3). There is one logistic 

difference however: a  should be calculated  

not for the natural frequency aω , but for one 

that is based  on the mean metacentric height. 

In Fig. 1 is drawn the boundary of principal 

resonance according to eq. (2).  Parameter 

values that correspond to a post-panamax 

containership have been used: 0.061275ζ =  at 

0 0.2076ω = s
-1
 and a restoring that is initially 

hardening ( 3 -0.99861c = ). Moreover, an extra 

boundary curve was drawn, defined according 

to the following expression (Spyrou 2005): 

4
, 1h a

a

ζ
= ≤                (5) 

This new boundary is worthy of special 

attention, because it is located in the region that 

is presumed to be characterised by global 

stability. It is recalled that, whilst the 

parametric oscillations originate from the 

boundary of stability of the upright equilibrium 

state, they are not confined by it but they 

expand also to its exterior. In particular, those 

that are subcritically generated, produce a fold 

bifurcation. For a hardening system these 

oscillations are initially unstable and they 

emanate from the left segment of the stability 

boundary of the linear system. The locus of the 

fold represents in fact the true (nonlinear) 

lower boundary of parametric oscillations. 

Underneath it, no roll oscillation can arise. 

Despite the complexity of phenomena, the 

locus of this fold can be determined by 

equation (5). It becomes thus apparent that the 

domain of parametric oscillations is broader 

and, to be correctly specified, eq. (2) should be 

combined with eq. (5).  
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Fig. 1: Main parametric roll boundaries at principal 

resonance. Iso-lines of constant steady amplitude are 

shown extending outside the customary boundary. 
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For each ( )h, a  pair that falls to the interior of 

the region defined by the curves (b) and (c) of 

Fig. 1, two stable states of ship operation 

coexist: the trivial upright equilibrium 

‘competes’ with at least one stable oscillatory 

parametric response. As matter of fact, an 

unsafe transition from the stationary upright 

state towards the oscillatory one could be 

realised. Some consolation is offered however 

by the fact that, such a change of state could 

come about only discontinuously and thus the 

presence of some strong perturbation is 

essential for kicking the system out of its safe 

basin, provoked e.g. by a strong wind gust. 

This coexistence, which had been hitherto 

neglected, means also that parametric 

oscillations might arise for a wide range of 

frequency ratios.  

THE CONTAINERSHIP 

To evaluate the above formulae and also 

perform further investigations, a post-panamax 

containership with length 288.87 m was 

modelled. Rendered view of her wetted area is 

shown in Fig. 2, obtained with MaxSurf 

(2006). A glimpse into the variation of GZ   

experienced in waves is seen in Fig. 3.  

 

CCRREESSTT  

 

Fig. 2: Characteristic variation of wetted surface of 

containership between a trough and a crest of a wave.  

EVALUATION OF MATHIEU-TYPE 

SYSTEM THROUGH CONTINUATION 

Continuation algorithms usually accept the 

mathematical model in the autonomous 

canonical form: 

( );
d

dt
=

x
f x b                (6)  

where ,x b  are respectively the state and 

control parameters’ vectors. Variation of one or 

more elements of the control vector b  creates, 

through solution of the above vector 

differential equation, branches of steady-state 

(in our case periodic) responses. These 

branches constitute the “spine” of dynamical 

response of a system and, depending on 

nonlinearity, they can associate with quite 

complex manifestations of system dynamics. It 

is thus imperative to have capability to trace 

branches of steady-states efficiently. For such a 

task continuation, a collection of numerical 

techniques, is indispensable. For mathematical 

details one may consult Dhooge et al. (2003).  
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Fig. 3: GZ variation between crest and trough of harmonic 

wave with λ/L=1.5 and H/λ=1/35. 

The basic mathematical model expressed 

through eq. (1) is characterised by explicit 

time-dependence in the restoring term. Thus it 

is not in the autonomous form of eq. (6) 

obliged by the continuation algorithm. To 

overcome this, a suitable additional pair of 

differential equations is introduced whose 

stable steady states are cyclic: 

( ) ( )sin , cose ex t y tω ω= = . Thereafter, eq. (1) is 

converted into a system of four 1
st
-order o.d.e. 
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that, while equivalent to eq. (1), shows no 

explicit time-dependence. 

Branches of steady periodic solutions and the 

boundary line of parametric rolling were 

subsequently traced automatically with respect 

to the following control parameters: the 

intensity of GM variation h ; the frequency 

parameter a  (it is interpreted as 
2
0

2

4

e

ω

ω
 if the 

continuation is used for evaluating the relevant 

ITTC formula; or as 
2

2

4 a

e

ω

ω
when the comparison 

is against that of ABS. While 0ω  is a function 

of ship alone, aω  is affected by the wave); the 

stiffness parameters 3 5,c c ; the roll damping 

ratio ζ . 

To systematise comparisons, linear, cubic and 

quintic fits were developed, each with a 

specific range of validity in terms of roll angle. 

Their coefficients, identified by the least-

squares method, are shown in Table 1, together 

with characterisations of these fits.   

The dependence of the steady oscillation upon 

the parametric variation h is shown in Figures 4 

to 6. Several values of the frequency parameter 

a around principal resonance have been tried. 

These reveal that the analytical expressions are 

very suitable for predicting the amplitude of 

oscillation of the Mathieu-type system (8), 

even for moderate-to-large h  (the amplitude is 

slightly over-predicted).  

Continuation was carried out also with the 

quintic term of the restoring retained. This 

extra term enables an additional folding of the 

curve of steady roll amplitude. It is notable 

that, despite the consideration of large 

amplitudes where one might expect an 

analytical perturbation-like approach to fail, the 

corresponding analytical and numerical curves 

are kept sufficiently close to each other.  

Two-parameter continuation (with respect to h , 

a ) was also performed for capturing directly 

the boundary of roll oscillations (Fig. 7). The 

obtained curves have been then contrasted 

against the curves derived as plots of the 

analytical formulae (2) and (5). One notes good 

degree of coincidence between the two types.  

 

Table 1 : Coefficients of GZ fits. 
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Fig. 4: Comparison of analytical (dotted) and numerical 

(continuous line) parametric roll amplitudes for the defined 

range of validity of the cubic hardening fit.  

 

 c3 c5 range 

of 

validity 

quality  

of fit 

linear - - 15
0 

excellent 

cubic 

hardening 

-

0.999 

- 20
0
 excellent 
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-
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Fig. 5: As above, for quintic hardening fit.  
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Fig. 6: As above, for quintic softening fit. 
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Fig. 7: Comparison of instability boundaries for a simple 

Mathieu type model, obtained by analytical formulae and 

by continuation. 

 

VALIDATION FOR NON-HARMONICALLY 

VARYING ( ), ; ,GZ t Hφ λ  

 The variation of GZ  might not be truly 

symmetric, even in an idealised harmonic 

wave. Moreover, maximum and minimum  

GZ values may not be realised exactly at the 

trough and the crest, respectively. Such 

features have been met also in the modelled 

containership. In Fig. 8 is shown a comparison 

of the calculated fluctuating GM on a harmonic 

wave with: i) a presumed as harmonically 

varying GM that presents same level peaks 

with the original one but zero phase relatively 

to the wave; ii) the previous harmonic GM with 

its phase shifted as of the original one. As the 

differences are prevalent, one wonders how 

important could these be for the prediction of 

parametric roll tendency? Thus a further 

continuation study was undertaken using this 

time the following roll equation: 

( )02 , ; 0e

XX

mg
GZ t H

J
φ ζω ϕ φ ω+ + =&& &             (7) 

‘Exact’ GZ  curves were calculated in advance 

using MaxSurf, for several positions of the ship 

on a harmonic wave, in condition of vertical 

equilibrium. The procedure was repeated for a 

few combinations of wave length and wave 

steepness.  A 3-parameter fitting procedure was 

then developed (Scanferla 2006). A snapshot of 

the result is shown in Fig. 9. 

In the first instance, the wave length was fixed 

to one and a half times the ship length. Values 

for the coefficients of the GZ function were 

determined by minimising a merit function 

defined by the sum of distances squared, 

measured from the actual data points to the 

sought nonlinear regression line. In this process 

preferences may be set: here it was ensured that 

the GM value obtained from the fit (at some 

arbitrary longitudinal position on the wave), is 

practically the same with the true local GM. 

Concurrence of GM means that no serious 

difference should be expected in the frequency 

of encounter where parametric rolling arises.  
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Fig. 8: GM  variations  for one wave length:  λ/L =1.5,  H/λ 

=1/50.  
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Fig. 9: Some indication about the attained quality of GZ 
fitting for λ/L =1.5 and  H = 10.725m: GZ at wave trough 

(upper); GZ variation along the wave at 0.26φ = rad 

(lower). 

With the fluctuating GZ parameterized with 

respect to wave height by means of the above 

fitting process, continuation analysis was 

subsequently performed. Results were then 

compared against the analytical ones. It is 

essential to commend here about the 

correspondence between the wave height H 

that appears explicitly in eq. (7) and the 

parametric amplitude h that appears in eq. (1). 

As indicated by Fig. 9, the function 

( )h f H= becomes nonlinear (softening) at 

extreme wave heights. 

 

 

 

 

 

 

 

 

 

Fig. 10: Relation of wave height with amplitude of 

parametric excitation. 
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Fig. 11: Steady parametric amplitudes for a = 1: a) cubic 
hardening GZ, b) quintic hardening, c) Fourier. Horizontal 

lines indicate ranges of validity of approximations (dots for 

the analytical and continuous lines for the numerical). 
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Fig. 12: Comparison of boundaries of instability obtained 

by use of the analytical formulae and by the “Fourier GZ”. 

The effect owed to the more accurate 

representation of the GZ function is 

considerable (Fig. 11). More illuminating is a 

comparison concerning the boundary of 

parametric rolling on the (a, H) parameters’ 

plane, revealing the following characteristic 

(Fig. 12): the new boundary line seems to be 

shifted in comparison to the one obtained from 

the simpler Mathieu-type model. This is 

interpreted as being due to the non-symmetric 

variation of GM and the fact that the mean GM 

value departs from the one of harmonic 

variation.  

IMPLEMENTATION OF A HEAVE-PITCH-

ROLL MODEL 

At this stage a different direction was followed 

and a coupled roll-pitch-heave model was 

implemented (Gavriilidis 2007). By this could 

be taken into account the effect that one 

expects to be introduced by vertical plane 

dynamics, related to the fact that the principal 

resonance appears at an encounter frequency 

that is not particularly low. The mathematical 

model used was very similar to the one 

published by Neves & Rodriguez (1996) and is 

given briefly here in standard notation. The 

hydrodynamic coefficients as well as direct 

excitations (Froude-Krylov) were calculated 

from the strip method of Maxsurf’s Seakeeper 

code taking as basis frequency the condition of 

principal resonance. Hydrostatic coefficients 

were calculated analytically. The coefficients 

that were extra to those that have appeared 

previously and a non-zero value was 

appropriate or was eventually used for them, 

are found in Table 2. The derivatives due to 

wave passage were calculated internally (in 

fact these produce the parametric excitation) 

because they are time dependant; e.g. for  

( ) 2z

L

y
Z t g dx

z
ζ ρ ζ

∂
=

∂∫  the following steps are 

taken: the wave profile cos ( )k x ctζ ζ= − at 

each section is determined. The result of the 

above calculation is multiplied by 
y

z

 ∂
  ∂ 

 for 

each section. Finally, “per section” results were 

calculated along the ship length. 

( ).. . .. .
.. . .. .
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                (8) 

Roll amplitudes as functions of wave height are 

presented in Fig. 13, for frequency ratios 
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around principal resonance. These curves were 

produced automatically by continuation which 

thus have worked successfully for the coupled 

model too. One observes that, for the coupled 

model, parametric roll seems easier to be 

realized. This is in line with similar observation 

by Neves. The matter certainly needs to be 

investigated further. It was similarly confirmed 

that the 2
nd
  order model, i.e. if the 3

rd
 order 

terms were neglected, does not produce 

realistic results (response amplitudes were 

diverging to infinity).    

 
Fig. 13: Parametric roll amplitudes based on coupled 

model. 

 

CONCLUSIONS 

The analytical formulae can successfully 

characterise the behaviour of a principally 

Mathieu-type system. However, as the 

mathematical model incorporates more detail, 

featuring for example a non-harmonic variation 

of GZ in waves, their quantitative prediction 

potential of parametric roll is placed in doubt. 

 It is essential to be recognised that the 

boundary of parametric oscillations is defined 

by the locus of the saddle-nodes of the 

parametric oscillations in combination with the 

locus of the supercritical birth of parametric 

oscillations. 

Numerical continuation can automate the 

derivation of parametric rolling boundaries and 

of steady-state responses. More complex 

mathematical models may also be 

accommodated. 

The coupled roll-heave-pitch model showed 

considerably easier inception of parametric 

rolling, a matter that is worthy further 

investigation. 

 
             Table 2: Coefficients of coupled model. 

Inertia 

z
m Z+

&&
   

149,647,024 kg 

yyI M θ+ &&   

752,763,959,062 kg m2 

Zθ&&      

1,810,274,280 kg m 
zM &&
      

3,706,664,872 kg m 

Damping 

  
zZ &
   

72,870,518 kg/s 

M θ&    

380,795,280,003 kg m
2
/s 

Z θ&      

1,767,114,533 kg m/s 
zM &
     

1,074,248,812 kg m/s 

Linear hydrostatic 

zZ  
 

101,698,799 kg/s2 

zM   

1,360,729,924 kg m/s
2
 

Zθ  
 

1,360,729,924 kg m/s
2
 

Mθ   

501,777,639,019 kg m2/s2 

2
nd
 order hydrostatic 

zzZ   

-2,248,333 kg/(m s2)         

zzM   

-28,198,195 kg/s2 

zK φ  

-572,683,808  kg m/s
2
 

zZ θ   

-28,198,195 kg/s
2
 

zM θ   

-30,727,106,142 kg m/s
2
 

Zφφ   

-572,683,809 kg m/s
2
 

Mφφ   

-35,978,008,003 kg m
2
/s

2
 

Kφθ  

-35,978,008,003  kg m
2
/s

2
 

Zθθ  
 

-30,727,106,143 kg m/s
2
 

Mθθ   

-916,776,984,097 kg m
2
/s

2
 

3
rd
 order hydrostatic 

zZφφ   

198,242,332 kg/s
2
 

Zφφθ  
 

10,191,624,112 kg m/s
2
 

zzK φ  

198,242,332  kg/s
2
 

Kθθφ  

2,060,120,263,668 kg m
2
/s

2
 

zMφφ   

10,191,624,112 kg m/s
2
 

Mφφθ   

2,060,120,263,668 kg m
2
/s

2
 

M θθθ   

1,040,935,897,781kg m
2
/s

2
 

zK φθ  

10,191,624,111  kg m/s
2
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