
GUIDELINE FOR PREPARATION 

Proceedings of the 10th International Ship Stability Workshop 

   

Analytical Predictions of Surf-Riding Threshold and Their 

Experimental Validation 

Atsuo Maki, Naoya Umeda 

Osaka University, JAPAN  

 

ABSTRACT  

As a candidate of the International Maritime Organization (IMO) vulnerability criteria for 

broaching, applicability of Spyrou’s analytical formula for surf-riding threshold for a ship in 

following waves is examined. As a result, it is concluded that Spyrou’s formula can be simply used 

and provides fairly good agreement with surf-riding threshold obtained by numerical bifurcation 

analysis except for large wave steepness. Then a different analytical formula is newly proposed. By 

applying a continuous piecewise linear approximation to the wave-induced surge force, a 

heteroclinic bifurcation point is analytically obtained with an uncoupled surge equation. Calculation 

results using this formula are presented, and show good agreement with those obtained by utilizing 

a numerical bifurcation analysis, even for large wave steepness. Further, extensive tests have been 

conducted for an unconventional ship model to experimentally obtain the surf-riding threshold. 

Then it is confirmed that the experimentally determined surf-riding threshold reasonably well 

agrees with the calculation results using the proposed analytical formula. 
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INTRODUCTION 

The IMO started to develop performance-based 

intact stability criteria, which should cover 

stability variation problems, stability under 

dead ship condition and broaching, with the 

target date of 2010. For each phenomenon, the 

working group of the SLF Sub-Committee at 

the IMO agrees that this criterion should 

consist of a vulnerability criterion and a direct 

stability assessment using first-principle tools. 

(Japan, the Netherlands and the United States, 

2007) Since the vulnerability criterion is to be 

applied to all ships, it should be easily used. 

And a non-empirical approach is recommended 

to enable us to apply it to new ship-types. 

Therefore, it is desirable that it utilises 

analytical formulae rather than numerical 

simulation using discrete modelling of 

continuous variables. An analytical formula 

here means that an expression describing 

phenomena in terms of mathematical concept 

of limits and continuity. 

Since the surf-riding is the prerequisite of 

broaching-to, occurrence of broaching-to can 

be replaced by that of surf-riding. Thus, an 

analytical approach for predicting surf-riding 

threshold in following seas is highly expected. 

As a candidate of this approach, Spyrou (2001) 

presented an analytical formula for prediction 

of surf-riding threshold. He approximated the 

thrust and resistance curve using polynomial 

fitting and derived an exact analytical 

expression of surf-riding threshold. Therefore, 

in this paper, we attempt to examine the 

applicability of his formula and to propose a 

different analytical approach as an alternative. 
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These analytical approaches are compared with 

numerical bifurcation analysis (Maki et al., 

2007) and free-running model experiments of a 

new-ship types. 

CO-ORDINATE SYSTEM 

In this paper all the formulations are based on 

the co-ordinate system shown in Fig.1. An 

inertia co-ordinate system ο ξηζ− with the 

origin at a wave trough has the ξ  axis pointing 

toward the wave direction. The ship fixed co-

ordinate system, 
sG x y z− , with the origin at 

the centre of gravity of the ship has the x - axis 

pointing toward the bow and z - axis downward. 

Gξ  represents the longitudinal position of the 

centre of gravity from the wave trough. 

 

 

Fig. 1: Co-ordinate systems. 

NUMERICAL BIFURCATION ANALYSIS 

The equation of motion representing nonlinear 

surging is expressed as (1): 

 

( ) ( ) ( )[ ], 0
x G w

m m R u T u n Xξ+ + − − =&&
 (1) 

In this equation a dot denotes differentiation 

with respect to time t. Here m : the ship mass, 

xm : the added mass in the x direction, u : the 

instantaneous ship velocity in the x direction, 

R: the ship resistance, T: the propeller thrust, n 

the propeller rate, Xw: wave-induced surge 

force. In this equation higher order terms, such 

as thrust variation due to wave particle velocity 

are ignored.  

Put the state vector as follows: 

 

( ),
T

G u≡x  (2) 

In this paper, for the sake of brevity, /Gξ λ  is 

denoted: G . Here equation (1) can be rewritten 

as follows: 

( )1 2( ; ) ( ; ), ( ; )
T

n f n f n= =x F x x x&  (3) 

where 

 

( )
{ }

1

2

/

( ; ) ( ) /( )w x

f u c

f T u n R u X m m

λ= −

= − + +
 

A nonlinear dynamical system described by 

Equation (3) could have fixed points as 

follows: 

 

( ) ( )0 0 1 1, and ,
T T

G c G c≡ ≡x x  (4) 

Under the definition of 
0x and 

1x , they must 

satisfy the equilibrium conditions: 

 

{ } ( )0( ; ) ( ) ( ) / 0W xT c n R c X G m m− + + =  (5.a) 

{ } ( )1( ; ) ( ) ( ) / 0W xT c n R c X G m m− + + =  (5.b) 

Linearizing Equation (3) at 0x  yields the 

conditions about eigenvalue αµ  and 

eigenvector ( ),
T

G uα α α=x  as follows: 

 

11 222 ( ) 0Dα αµ α α− + − =  (6.a) 

( )11 12 0G uα α αα µ α− + =  (6.b) 

2 2 2
0G uα α δ+ − =  (6.c) 

where 2

11 22 11 22 12 21( ) 4( )Dα α α α α α α= + − − . Here 

ijα  denotes the Jacobi matrix of linearized 

equation of Equation (3) at 
0x . 

Heteroclinic bifurcation requires the unstable 

invariant manifold from a saddle coincides 

with the local stable invariant manifold of 

another saddle. Mathematically this idea can be 

written as follows: 

 

2 2 1

0 1 2( , ) 0α τ δ+ − − = ∈Ψ x x x R  (7) 

Here ( , )I τΨ x means the solution of the state 

equations where Ix is the initial value of the 

state vector, τ  is the duration of integration in 

time. Then, if we find the propeller rate, 
0n , 

which satisfies Equations (5)-(7), this is a 

heteroclinic bifurcation point. 

Numerical calculations were carried out, and an 

example of the results is shown in Fig.2. The 
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wave steepness is 0.0667 and the wavelength to 

the ship length ratio is 1.5. In this case the 

heteroclinic bifurcation point obtained is the 

nominal Froude number, Fn, of 0.3483.  
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Fig.2  Comparison of phase trajectories    in the vicinity of a 

surf-riding threshold (Maki et al. 2007). 

The iterations required by numerical 

bifurcation analysis to converge to 0.3483 in 

the above sea state are shown in Fig.3. 
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Fig. 3  Convergence process of the numerical bifurcation 

analysis for nominal Froude number (Maki et al. 2007). 

Though numerical bifurcation analysis gives 

accurate solution described by Equation (1), it 

requires numerical integration with discrete 

time variable. Therefore this method is not so 

suitable for the vulnerability criteria but can be 

used to validate analytical methods. 

 

MATHEMATICAL MODEL FOR NON-

LINEAR SURGING AND SPYROU’S 

FORMULA 

Assuming that the hull form is almost 

longitudinally symmetric, the wave-induced 

surge force is represented as the first order 

approximation as follows: 

 

( )sinw GX f kξ≈  (8) 

where 2 /k π λ≡  and λ  is the wavelength. The 

relative ship speed to waves, Gξ&  can be 

obtained by the formulae, G u cξ = −& . Here c is 

the wave celerity. Then we can simplify the 

Equation (1) as Equation (9).  

 

( ) ( ) ( )

( ) ( ) ( )

2

1 2

3

3

;

sin ,

x G G G

G G

m m A c n A c

A f k T c n R c

ξ ξ ξ

ξ ξ

+ + +

+ + = −

&& & &

&  (9)  

If relative speed variation is limited, a method 

of least-square fit can be applied to the 

nonlinear damping so that it can be 

approximated with an quadratic function as 

follows (Spyrou, 2001): 

 

( ) ( ) ( )

( ) ( )

2sgn sin

,

x G G G Gm m n f k

T c n R c

ξ γ ξ ξ ξ− + ⋅ +

= −

&& & &

 (10) 

where ( )nγ  is defined as: 

( )
( ) ( )3 4 5

1 2 31 1 1

4

1

;
l l l

G G Gi i i

l

Gi

A c n A c A
n

ξ ξ ξ
γ

ξ
= = =

=

+ +
= −

∑ ∑ ∑
∑

& & &

&
. 

In the above, l points are sampled in an 

appropriate velocity range which is selected as 

[ / 2, 0]
G

cξ ∈ −&  based on some preliminary 

calculations. By requesting the maximum ship 

speed to be equal to the wave celerity, Spyrou 

obtained the exact analytical formula of surf-

riding threshold as follows: 

 

( ) ( )[ ]
( )22

2
, 1

4

x
k m m

f R c T c n
γ
+

= − +  (11) 

This formula can be also deduced by requesting 

the heteroclinic bifurcation (See Appendix). 

CONTINIUOUS PIECEWISE LINEAR 

APPROXIMATION FOR NON-LINEAR 

SURGE EQUATION 

As shown in the above section, Spyrou 

converted nonlinear damping to quadratic one. 

Equation (9) has two nonlinear elements; one is 



GUIDELINE FOR PREPARATION 

Proceedings of the 10th International Ship Stability Workshop 

   

nonlinear damping and the other is a restoring 

term represented by a sinusoidal function.  

A quadratic approximation, however, is not 

necessarily reasonable because the shape of the 

original damping is almost linear. As an 

alternative, the authors approximate with the 

following equivalent linear expression: 

 

( ) ( ) ( )

( ) ( )

sin

,

x G G Gm m n f k

T c n R c

ξ β ξ ξ+ + +

= −

&& &

 (12) 

where 
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Fig. 4: Schematic view of continuous piecewise linearization 

for sinusoidal function. 

Since this equation cannot be exactly solved, 

the authors attempt to approximate the 

nonlinear restoring term with continuous piece-

wise linear (CPL) curves as shown in Fig. 4. 

Then, the following differential equation is 

obtained: 

 

( )
1 2 3

sin
G G G

kξ α ξ α ξ α+ + =&& &
 (13) 

where 
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This equation can be easily solved for each 

range. To determine the surf-riding threshold as 

a heteroclinic bifurcation point, it is necessary 

to find a trajectory connecting two saddles. 

Thus we should find the trajectories to and 

from the saddles first. This requires that the 

solution of Range 1 and that of Range 3 do not 

tend to infinity when the time tend to infinity. 

Taking account of the connection conditions at 

the borders, the following equation can be 

reduced. 

 

2 cos sinR

R I I I
e c c

λ τα λ τ λ τ − = −   
(14) 
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Here [ ]3ReRc c= , [ ]3ImIc c= , [ ]3ReRλ λ= and 

[ ]3ImIλ λ= . If this equation is satisfied, a 

heteroclinic bifurcation point is determined. It 

can be solved using simple Newton iterations 

with respect to a single variable, such as 

propeller rate, n, when the bifurcation point is 

required as a function of the propeller rate. 

Although the Newton method is a numerical 

calculation procedure, it does not require to 

discretize Equation (28). This can be regarded 

as an analytical approach. 
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NUMERICAL RESULTS 

In order to validate those analytical approaches, 

calculated results were obtained using the 

analytical formulae proposed above for a 135 

gross tonnage-type purse seiner known as the 

ITTC Ship A-2 are compared with those 

obtained by the numerical bifurcation analysis.  

  

CL

 

 

Fig. 5: Body plan of the ITTC Ship A-2. 

Its body plan is shown in Fig.5. Its detailed 

data are available in Umeda and Hashimoto 

(2002). 
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Fig. 6: Comparison of the surf-riding thresholds predicted 

using the numerical bifurcation analysis with quadratic 

damping, and that predicted using the Spyrou’s solution, 

for / 0.06H λ = . 

Fig.6 indicates the comparison between the 

surf-riding threshold predicted using the 

numerical bifurcation analysis (Maki et al., 

2007) of equivalent quadratic damping, and 

that predicted by using the Spyrou’s analytical 

solution, Equation (10). In this figure the 

abscissa is the wavelength to ship length ratio, 

while the ordinate indicates the nominal Froude 

number, defined as the ship velocity in calm 

water under the same propeller revolutions. 

Here the wave steepness, /H λ , is 0.06  and the 

wavelength to ship length ratio, / Lλ , ranges 

from 1.0 to 2.0. Since there is no visible 

difference between the two, it can be concluded 

that the Spyrou’s formula is equivalent to the 

numerical bifurcation analysis for predicting 

the surf-riding threshold with Equation (10).  

Next, the threshold using the present formula, 

i.e. Equation (14), is compared with that 

obtained from the numerical bifurcation by 

using the CPL approximated wave-induced 

surge force, as shown in Fig.7.  
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Fig. 7: Comparison of the surf-riding thresholds predicted 

using the numerical solution, and that predicted using the 

analytical solution with CPL approximation, for 

/ 0.06H λ = . 

Since there is also no visible difference 

between the two, it can be concluded that the 

present formula is equivalent to the numerical 

bifurcation analysis for predicting the surf-

riding threshold with Equation (13). Therefore, 

these analytical methods are reliable enough. 

Then, the comparisons are extended to cover 

the numerical bifurcation analysis for the 

original surge equation, i.e. Equation (1), as 

shown in Figs.8-9. When the wave steepness is 

small, the three methods show similar trends. 

Compared to the numerical bifurcation analysis, 

Spyrou’s formula slightly overestimates the 

value of the threshold for lower wave steepness, 

but underestimates it for longer waves with 

higher wave steepness. On the other hand, the 

present method provides reasonable 

agreements with the numerical bifurcation 

analysis. The reason for the difference between 

the two could be the approximation errors for 

the damping term. The estimation of surf-

riding threshold could depend on the errors in 

damping, which could be more significant for 

large ship motion in higher wave steepness and 

longer wavelength. 
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Fig. 8: Comparison of the surf-riding thresholds predicted 

using several methods, for / 0.06H λ = . 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 1.2 1.4 1.6 1.8 2

λ / L

F
n

Numerical Bifurcation
Analysis

Spyrou's Formula

Present Method

 

Fig. 9: Comparison of the surf-riding thresholds predicted 

using several methods, for / 0.08H λ = . 

VALIDATION AGAINST FREE-RUNNING 

MODEL EXPERIMENTS 

In order to validate the present formula, 

particularly its applicability to unconventional 

ships to which the IMO vulnerability criterion 

is expected to apply, predictions were 

compared with results obtained from a free-

running model experiment carried out in the 

seakeeping and manoeuvring basin of NRIFE 

(National Research Institution of Fishing 

Engineering) with the ONR tumblehome vessel. 

The vessel’s body plan is shown in Fig.10. This 

is a good example of an unconventional vessel, 

and has all the required information in the 

public domain. Her above-water hull has 

tumblehome and a wave-piercing bow. The 

ship is equipped with twin screws and twin 

rudders. The details of the experiments will be 

reported by Umeda et al. (2008). 

Fig.11 shows a comparison of the predicted 

surf-riding thresholds, using both the present 

formula and the numerical bifurcation analysis, 

with the experimental results. In this the 

autopilot course was set to -5 degrees, because 

it was known that the effect of such small 

autopilot course on the surf-riding threshold is 

negligibly small (Umeda et al., 2006) and an 

autopilot course of 0 degrees could cause a 

collision with the tank wall at the beginning of 

the model run. Here the ship model initially 

drifted near the wave maker and then the 

propellers and the autopilot control were 

activated. The propeller revolutions were set to 

attempt to control the specified nominal Froude 

numbers during the model runs and a 

proportional autopilot was used. 

 

Fig. 10: Body plan of the ONR tumblehome vessel. 
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Fig. 11: Comparison of the predicted surf-riding thresholds 

for the two methods with the experimental results for 

/ 0.05H λ = . 

The predicted surf-riding thresholds obtained 

both from the numerical bifurcation analysis 

and the present formula agree well with the 

results from the experiments, where the surf-

riding threshold is between the runs showing 

periodic motion, and those showing surf-riding 

(as shown in Fig.11). The slight underestimate 

in the Froude number for the predicted 

threshold could be caused by the nonlinearity 

in the wave-induced surge force, which was 

discussed by Hashimoto et al. (2004). For 

practical purpose, however, the present formula 

seems to provide sufficiently accurate 

prediction even for this unconventional vessel. 
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CONCLUDING REMARKS 

The main conclusions from this work are 

summarized as follows: 

(1) Applicability of the analytical solution 

proposed by Spyrou was examined. 

Numerical simulation results using 

Spyrou’s formula show good agreements 

with numerical bifurcation analysis of its 

assumed model.  

(2) Based on continuous piecewise linear 

approximation, analytical formulae to 

estimate the deterministic surf-riding 

threshold are presented and are reduced 

to a simple formula for practical use. 

(3) These formulae were validated by 

computing results with those obtained 

using a numerical bifurcation analysis. 

While Spyrou’s formula could 

underestimate the Froude number for the 

surf-riding threshold for longer and 

steeper waves, the present formula agrees 

with the numerical bifurcation analysis 

fairly well. 

(4) The present formula was well validated 

with free-running model experiments 

using the ONR tumblehome vessel as an 

example of unconventional vessels. 

ACKNOWLEDMENTS 

The work was supported by a Grant-in Aid for 

Scientific Research of the Japan Society for 

Promotion of Science (No. 18360415) and the 

US Office of Naval Research contract No. 

0014-06-1-0646 under the administration of 

Dr. Patrick Purtell. The work described here 

was partly carried out as a research activity of 

the stability project of Japan Ship Technology 

Research Association, funded by the Nippon 

foundation. The Authors express their sincere 

gratitude to the above organizations. 

REFERENCES 

Hashimoto, H., Umeda, N. and Matsuda, A. 2004, “Importance 

of Several Nonlinear Factors on Broaching Prediction”, 

Journal of Marine Science and Technology, Vol.9,pp.80-93. 

Japan, the Netherlands and the United States, 2007, 

“Framework for the Development of New Generation 

Criteria for Intact Stability”, SLF50/4/4, IMO. 

Maki, A., Umeda, N. and Hori, M., 2007, “Prediction of Global 

Bifurcation Points as Surf-Riding Threshold in Following 

Seas, Journal of the Japan Society of Naval Architects and 

Ocean Engineers, Vol., 5, p. 205-215, (in Japanese). 

Spyrou, K. J., 2001, “Exact Analytical Solutions for 

Asymmetric Surging and Surf-Riding”, Proceeding of 5th 

International Workshop on Stability and Operational 

Safety of Ships, University of Trieste (Trieste), pp.4.5.1-

4.5.3. 

Umeda, N. and Hashimoto, 2002, “Qualitative Aspects of 

Nonlinear Ship Motions in Following and Quartering Seas 

with High Forward Velocity”, Journal of Marine Science 

and Technology, Vol., 6, pp. 111-121. 

Umeda, N., Hori, M. and Hashimoto, H., 2006, “Theoretical 

Prediction of Broaching in the Light of Local and Global 

Bifurcation Analysis”, Proceeding the 9th International 

Conference on Stability of Ships and Ocean Vehicles, 

Federal University of Rio de Janeiro (Rio de Janeiro), 

Vol.1, pp.353-362. 

Umeda, N., Yamamura, S., Matsuda, A., Maki, A., and 

Hashimoto, H. 2008, “Extreme Motion of a Tumblehome 

Hull in Following and Quartering Waves”, Proceeding of 

the 6th Osaka Colloquium on Seakeeping and Stability of 

Ships, Osaka Prefecture University (Osaka), in press. 

APPENDIX 

The authors attempt to derive Spyrou’s formula 

by a different way. Unstable equilibrium point 

is represented as follows: 

 

( ) ( ) ( )11 ,
sin

2 2
G

T c n R c

f

λ
ξ ν λ

π
− −

= − −%  (A.1) 

Here ν  is arbitrary integer. And a trajectory in 

phase plane can be represented as follows: 

 

( )
2

2

2 cos 2 sin1

1 4
Gpk G G

G u

q k p k r
c qe

k p p

ξ ξ ξ
ξ

+
= − + −

+
&

 (A.2) 
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where 
( )

x

p
k m m

γ
=

+
 and 

x

fk
q

m m
=

+
. 

Here uc  is arbitrary constant to be determined 

by an initial condition.  

A heteroclinic bifurcation requires that the 

trajectory from the saddle type equilibrium 

point reach the another saddle, taking infinite 

time. Put the positions of the two saddles in the 

phase-plane as follow: 

 

( ) ( ), ,0G G Gξ ξ ξ=& %  (A.3a) 

( ) ( ), ,0G G Gξ ξ ξ λ= −& %  (A.3b) 

Substituting Equation (A.3a) into Equation 

(A.2), we can determine the arbitrary constant 

uc  as follows: 

 

( ) ( )
( )

2

2

2 1 /
exp 2

1 4
u G

r pq r q
c pk

pq p
ξ

− ± −
=

+
%  (A.4) 

Then Substituting Equation (A.3b) into 

Equation (A.2) yields following relation: 

 

( ) ( )2
exp 2 1 2 1 / 0pk r pq r qλ  − − ± − =     

  (A.5) 

Setting the second term of Equation (A.5) to 

zero yields Spyrou’s formula. Furthermore, 

setting the first term to zero gives the following 

condition: 

 

0λ =  (A.6) 

This can be regarded as a kind of calm water 

condition.

 


