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ABSTRACT

Traditionally the hydrodynamic force on a ship’s hull is obtained by integrating the pressure over the hull,
using Bernoulli’s equation to compute the pressures. Due the need to evaluateΦt , Φx, Φy, Φz at every instant
in time, this becomes a computational challenge when one wishes to know the hydrodynamic forces (and
moments) on the instantaneous wetted surface of a vessel in extreme seas. A methodology that converts the
integration of the pressure over the hull surface into an impulse, the time derivative of several integrals of the
velocity potential over the surface of the vessel and possibly the free surface near the vessel is introduced.
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INTRODUCTION

Sclavounos, Telste and Reed (Sclavounos, 2011;
Sclavounos,et al., 2011) have developed a non-
linear slender-body model for the treatment of the
potential flow problem governing the responses of
a vessel in steep random waves. Boundary value
problems have been derived for the disturbance ra-
diation and diffraction velocity potentials relative
to the ship-fixed coordinate system. The evaluation
of the sectional force (and moment) distributions
based on the solution of these potential flow sec-
tional boundary value problems is the subject of the
present paper. A sectional force method treats as
unknown the sectional force distribution along the
ship length as opposed to the local pressure, which
is natural within a slender-body framework. Com-
bined with additive viscous models, these sectional
force models lead to the evaluation of the integrated
forces and moments which are input to the vessel
nonlinear equations of motion.

BACKGROUND

Traditionally, the derivation of correct sectional
force distributions has played a central role in
slender-body theory of aerodynamics and hydrody-
namics. The direct application of Bernoulli’s equa-
tion is complicated by a number of facts. The
first is the need to evaluate gradients of the ve-
locity potential, which may be a delicate compu-
tational task within a panel method. The second is
the proper treatment of the longitudinal gradients of
the ambient and disturbance potentials, which may
not be possible to ignore in light of the slender-
ness approximations. A third fact which arises in
connection with the present nonlinear time-domain
slender-body theory is the proper interpretation of
time derivatives with respect to the ship-fixed co-
ordinate system and their careful treatment in the
vicinity of the free-surface ship-hull intersection.

These complications with the direct appli-
cation of Bernoulli’s equation within a slender-
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body theory are mitigated if the integrated sectional
forces are instead evaluated by the proper applica-
tion of the momentum conservation theorem. This
approach has several merits that have been taken
into account in the development of strip theory and
subsequent linear and nonlinear slender-body the-
ories. Drawing upon the work of Lighthill (1960)
and Newman & Wu (1973) on the swimming of
slender fish, expressions can be derived for the sec-
tional force distributions which are simple func-
tions of the sectional integrals of the velocity po-
tential. This important result circumvents in an el-
egant and robust manner the need to interpret the
longitudinal convective terms in Bernoulli’s equa-
tion. Moreover, the presence of a sectional integral
of the velocity potential in the force expression sug-
gest that this is the fundamental quantity needed for
the evaluation of the sectional and total forces, as
opposed to the local values of the pressure or veloc-
ity potential. This in turn may lead to simple—or
even analytical—expressions for the sectional force
distributions within a slender-body framework in a
number of settings. Finally, this sectional force for-
mulation allows for a simple and robust interpre-
tation of time derivatives when the sectional wet-
ted surface is time dependent as the vessel sections
move in and out of the free surface.

THE BOUNDARY VALUE PROBLEM AND
ITS DECOMPOSITION

Let us assume as an earth-fixed reference a right-
handed coordinate system(X,Y,Z) and a ship-fixed
right-handed coordinate system (x,y,z) centered at
an arbitrary pointB with the xy-plane parallel to
the calm water surfaceZ = 0 when the ship is at
rest (Figure 1). The ship position in space is com-
pletely defined by the rectilinear displacement vec-
tor ΞΞΞB(t) = ξ1(t)iii +ξ2(t) jjj +ξ3(t)kkk from the origin
of the earth-fixed coordinate system to the origin of
the ship-fixed coordinate system and the Euler an-
gles defined in the order[ξ6(t),ξ5(t),ξ4(t)].

The free surface is assumed to be a single-
valued function of the horizontal coordinatesX and
Y. Surface tension is negligible. The fluid is as-
sumed to be homogeneous, incompressible, and
frictionless. The fluid flow is assumed to be irrota-

tional. These conditions are sufficient to guarantee
the existence of a velocity potential.

The Total Velocity Potential

In the fluid surrounding the ship, the total ve-
locity potential isΦ. It satisfies the Laplace equa-
tion

∇2Φ = 0

within the fluid domain bounded by the free-surface
Z = ζ(X,Y, t) and the hull of the ship. The total po-
tential satisfies at least a linear free-surface bound-
ary condition onZ = ζ(X,Y, t).1

Hull Boundary Condition for the Total Potential

Since the hull boundary condition is derived
with vectors defined to be independent of frames
of reference or coordinate systems, the appropriate
boundary condition expressed in terms of either the
earth-fixed or ship-fixed frame of reference is ob-
tained from the components of vector equations.

Velocity of Points on the Hull

To obtain the hull boundary condition satisfied
by Φ, we first consider a point fixed on the hull
(fixed in the ship-fixed frame of reference). It has
ship-fixed coordinatesx, y, zand earth-fixed coordi-
natesX, Y, Z. The vectorsxxx andXXX from the origins
of the ship-fixed and earth-fixed coordinate systems
to the point, respectively, satisfy the equations

XXX = Xiii+Y jjj +Zkkk

xxx= xiii +yjjj +zkkk

xxx= XXX−ΞΞΞB(t)

whereΞΞΞB(t)= ξ1iii+ξ2 jjj+ξ3kkk is the vector from the
origin of the earth-fixed coordinate system to the
origin of the ship-fixed coordinate system. Since
the point is fixed on the hull,x, y, andz are inde-
pendent of time. Consequently, the ship-fixed time
derivative ofxxx vanishes. We have

000=
d∗xxx
dt

=
dXXX
dt

−
dΞΞΞB

dt
−ΩΩΩ×xxx

1As the free-surface boundary condition is not used in the
development of the momentum theory for the force, the spe-
cific free-surface boundary condition chosen is not important.
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Fig. 1 Coordinate systems for the nonlinear ship response problem.

whered∗/dt andd/dt operating on a vector obtain
the ship-fixed and earth-fixed time derivatives of the
vector, respectively. The velocityvvvSHIP of the point
on the hull is then

vvvSHIP=
dXXX
dt

=
dΞΞΞB

dt
+ΩΩΩ×xxx. (1)

If the point slides along the hull surface, it is
not fixed in the ship-fixed frame of reference and
d∗xxx/dt 6= 000. However, it is true thatnnn ·d∗xxx/dt = 0
so that

nnn·
dXXX
dt

= nnn·

(
dΞΞΞB

dt
+ΩΩΩ×xxx

)
nnn·vvvSHIP

wherevvvSHIP is the velocity of a fixed point on the
hull coinciding with the position of the sliding point
at timet.

Equation for the Hull Surface

The hull surfaceSB(t) is rigid and therefore in-
dependent of time in the ship-fixed frame of refer-
ence. Points on the surface are those points whose
ship-fixed coordinatesx, y, zsatisfy a mathematical
equation of the form

h(x,y,z) = 0.

The unit normalnnn on the hull surface is defined by
the equation

nnn=
∇h
|∇h|

.

The gradient points in the direction of maximum
increase ofh. For that reason it is stipulated that
h(x,y,z) > 0 for points inside the hull with ship-
fixed coordinatesx, y, z andh(x,y,z) < 0 for points
outside the hull. Thennnn is guaranteed to point into
the hull.

Hull Boundary Condition

To obtain the hull boundary condition, we now
consider an arbitrary point with ship-fixed coordi-
natesx, y, z and earth-fixed coordinatesX, Y, Z.
The point moves and traces out a smooth trajectory
so that both the ship-fixed and earth-fixed coordi-
nates are functions of time. The derivative ofh fol-
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lowing the point is

Dh
Dt

=
∂h
∂x

dx
dt

+
∂h
∂y

dy
dt

+
∂h
∂z

dz
dt

= ∇h·
d∗xxx
dt

= ∇h·

(
dXXX
dt

−
dΞΞΞB

dt
−ΩΩΩ×xxx

)
.

If the point is a fluid particle sliding along the sur-
face of the hull, thenDh/Dt = 0, dXXX/dt = ∇Φ, and

0= nnn·

(
∇Φ−

dΞΞΞB

dt
−ΩΩΩ×xxx

)
.

The hull surface boundary condition requires that
the normal velocity of a fluid particle on the hull
surface match the normal velocity of the hull:

nnn·∇Φ = nnn·

(
dΞΞΞB

dt
+ΩΩΩ×xxx

)
nnn·vvvSHIP

wherevvvSHIP is given by (1).

Incident Wave Potential

In the absence of a body, the velocity potential
would have been the ambient velocity potentialφI ,
which satisfies the Laplace equation

∇2φI = 0

in the fluid below the free-surface elevationZ =
ζI (X,Y, t).

The ambient wave velocity potentialφI is as-
sumed to satisfy the same free-surface boundary
condition as the total velocity potential, but onZ =
ζI (X,Y, t). It is also assumed that the incident wave
elevation differs little from the total wave elevation
except possibly near the vessel.

The Disturbance Velocity Potential

WhenζI < ζ, it is assumed thatφI can be ana-
lytically continued aboveZ= ζI to define a continu-
ation everywhere outside the hull in the fluid below
the free-surface elevationZζ. Then a disturbance
potentialφD is defined everywhere in this domain
according to the equation

φD = Φ−φI .

The difference in wave elevation between the to-
tal wave elevation around the hull and the ambient
wave potential that would have existed in the ab-
sence of the ship isζD. It obviously satisfies the
equation

ζD = ζ−ζI .

The free-surfce boundary condition for the
disturbance potential potential is derived from that
of the total velocity potential, substitutingφI + φD

andζI +ζD for Φ andζ in the total velocity poten-
tial free-surface boundary condition and linearizing
in φD andζD.

Hull Boundary Condition for the Disturbance Po-
tential

Using the assumed decomposition of the total
potential as the sum of the incident wave potential
and a disturbance potential, we obtain the equation

nnn·∇φDnnn·vvvSHIP−nnn·∇φI .

wherevvvSHIP is given by (1).

Boundary Condition at Infinity for the Disturbance
Potential

At infinity, the velocity due to the disturbance
velocity potential approaches zero, and the free-
surface waves generated by the interaction of the
ship with the ambient waves radiate outward. This
is the radiation boundary condition.

THE FLUID FORCE ON THE VESSEL

The purely three-dimensional case of a vessel os-
cillating in six degrees of freedom in steep ambi-
ent waves is considered. The most general fully
nonlinear problem is formulated first leading to the
treatment of special cases. The sectional force is
evaluated first relative to the inertial frame and next
relative to the ship-fixed coordinate system.

Figure 2 illustrates a 3D vessel undergoing
rectilinear and rotational displacements in steep
ambient waves. The fully nonlinear free-surface el-
evationζ(t) is the sum of the ambient wave eleva-
tion and the disturbance caused by the vessel dis-
placement and the corresponding total free surface
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Fig. 2 Coordinate system for vessel undergoing rectilinear and rotational displacement in steep ambient
waves

is denoted byST
F(t). The nonlinear wave elevation

of the ambient wave alone isζI(t) and the corre-
sponding free-surface elevation is denoted bySI

F(t).
The difference between the two free-surface eleva-
tions is assumed to be finite. Yet, this difference is
expected to be small, except perhaps near the water-
line. This assumption is essential for the derivation
of an approximate form of the three-dimensional
force acting on the vessel using the momentum the-
orem developed below. The fluid in the volumeV
bounded by the wetted surfaceST

B of the hull, the
free surfaceST

F , and a control surfaceST
∞ is consid-

ered:

ST = ST
B +ST

F +ST
∞ .

The control surface is fixed with respect to the
earth-fixed coordinate system. It is also bounded
until the end when the surface is moved to infin-
ity in all directions. The rate of change of the fluid
momentum in the volume is

FFFfluid = ρ
d
dt

∫∫∫

V

dV ∇Φ = ρ
d
dt

©
∫∫

ST

dSΦnnn (2)

where Gauss’ theorem has been used to convert the
volume integral to a surface integral. (Here, par-
tial derivatives with respect to time are earth-fixed
where the earth-fixed coordinatesX, Y, Z of a point
in space are fixed.) According to the transport theo-
rem, the rate of change of momentum is also given

by the equation

FFFfluid = ρ
∫∫∫

V

dV ∇
∂Φ
∂t

+ρ©
∫∫

ST

dSUn∇Φ

= ρ©

∫∫

ST

dS
∂Φ
∂t

nnn+ρ©

∫∫

ST

dSUn∇Φ

whereUn = nnn·UUU is the outward normal component
of the velocityUUU of the surfaceST . Putting these
results together, we obtain the equation

ρ
d
dt

©
∫∫

ST

dSΦnnn

= ρ©

∫∫

ST

dS
∂Φ
∂t

nnn+ρ©

∫∫

ST

dSUn∇Φ

= ρ©

∫∫

ST

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ
)

nnn

+ρ©

∫∫

ST

dS

(
Un∇Φ

−
1
2

∇Φ ·∇Φnnn

)

= ρ©
∫∫

ST

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ
)

nnn

+ρ©
∫∫

ST

dS

(
Un−

∂Φ
∂n

)
∇Φ

= ρ©
∫∫

ST

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ
)

nnn

−ρ
∫∫

ST
∞

dS
∂Φ
∂n

∇Φ .

(3)
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The third equality is obtained by using Newman’s
identity

©
∫∫

S

dS

[
∇ϕ

∂ϕ
∂n

−
1
2

∇ϕ ·∇ϕnnn

]
= 0

which holds for any velocity potentialϕ within a
volume enclosed by a surfaceS [Newman (1977),
p. 134, Eq. 89]. The last equality in (3) is obtained
from the equationsUn = 0 onST

∞ andUn = ∂Φ/∂n
on ST

F and ST
B. The total fluid forceFFFTOT acting

on the body is the integral ofpnnn over the wetted
surface of the hull. Thus we obtain the equation

FFFTOT =−ρ
∫∫

ST
B

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ+gZ

)
nnn

=−ρ
d
dt

©

∫∫

ST

dSΦnnn−ρ
∫∫

ST
∞

dS
∂Φ
∂n

∇Φ

−ρg
∫∫

ST
B+ST

F

dSZnnn

+ρ
∫∫

ST
∞

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ
)

nnn

(4)

for the total fluid force acting on the body. The fact
that the pressure vanishes onST

F has been used to
obtain this equation.

Equation (4) is an important intermediate re-
sult which was derived without invoking any ap-
proximations. It accomplishes one of the objectives
of the momentum formulation, namely to reduce
the definition of the force by pressure integration
into integrals that are much easier to evaluate or
further reduce as indicated below. The superscript
T has been used to indicate surfaces for the total
nonlinear problem.

The fluid that would have existed inside the
volume bounded by the ambient wave free surface
SI

F and the control surfaceSI
∞, if the ship had not

disturbed the water, is now considered. The surface
SI

∞ is slightly different fromST
∞ only due to the dif-

ference between the ambient wave elevationζI(t)
and the total nonlinear wave elevationζ(t). The to-

tal bounding surface isSI where

SI = SI
F +SI

∞ .

Just as was done for the fluid in the volumeV out-
side the hull below the surfaceST

F , one can consider
the rate of change of the fluid momentum inside the
volume bounded bySI . It can be obtained from
eqs. (2)–(3) by letting the hull shrink to infinites-
imal size. The integrals overST

B then vanish,ST
F

becomesSI
F andST

∞ becomesSI
∞. The force acting

on the vanishingly small ship is zero and is given
by either side of the equation

000=−ρ
d
dt

©

∫∫

SI

dSφI nnn−ρ
∫∫

SI
∞

dS
∂φI

∂n
∇φI

−ρg
∫∫

SI
F

dSZnnn

+ρ
∫∫

SI
∞

dS

(
∂φI

∂t
+

1
2

∇φI ·∇φI

)
nnn.

(5)

Equation (5) is subtracted from (4) to obtain the
equation

FFFTOT =−ρ
∫∫

ST
B

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ+gZ

)
nnn

=−ρ
d
dt

∫∫

ST
B

dSΦnnn−ρg
∫∫

ST
B

dSZnnn

−ρ
d
dt



∫∫

ST
F

dSΦnnn−
∫∫

SI
F

dSφI nnn




−ρg



∫∫

ST
F

dSZnnn−
∫∫

SI
F

dSZnnn




−ρ
d
dt



∫∫

ST
∞

dSΦnnn−
∫∫

SI
∞

dSφI nnn
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−ρ



∫∫

ST
∞

dS
∂Φ
∂n

∇Φ

−

∫∫

SI
∞

dS
∂φI

∂n
∇φI




+ρ



∫∫

ST
∞

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ
)

nnn

−

∫∫

SI
∞

dS

(
∂φI

∂t

− +
1
2

∇φI ·∇φI

)
nnn


 .

It is argued that the sums of the terms within the last
three pairs of square brackets are negligibly small
when the control surfaces are moved infinitely far
away from the ship. The forceFFFDYN acting on the
body due to the dynamic pressure is

FFFDYN =−ρ
∫∫

ST
B

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ
)

nnn

≃−ρ
d
dt

∫∫

ST
B

dSΦnnn

−ρ
d
dt



∫∫

ST
F

dSΦnnn−
∫∫

SI
E

dSφI nnn




−ρg



∫∫

ST
F

dSZnnn−
∫∫

SI
E

dSZnnn




+ρ
d
dt

∫∫

SI
W

dSφI nnn+ρg
∫∫

SI
W

dSZnnn.

HereSI
E is the portion ofSI

F that is outside the hull
andSI

W is the portion ofSI
F that is inside the hull:

SI
F = SI

E +SI
W .

The functionsφI andΦ are continued analytically
aboutZ = ζI and Z = ζ, respectively, so that the
function φI is defined forZ ≤ ζ and Φ is defined
for Z ≤ ζI . Then Φ may be expanded about the

ambient free-surface elevationZζI . The dynamic
force satisfies the approximation

FFFDYN =−ρ
∫∫

ST
B

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ
)

nnn

≃−ρ
d
dt

∫∫

ST
B

dSΦnnn−ρ
d
dt

∫∫

SI
E

dSφDnnn

−ρg
∫∫

SI
E

dSζDnnn+ρ
d
dt

∫∫

SI
W

dSφI nnn

+ρg
∫∫

SI
W

dSZnnn

(6)

wherennn points into the body onST
B and upward(nnn·

kkk> 0) on SI
E andSI

W.

We now follow the steps taken in considering
the rate of change of the momentum in the fluid out-
side the hull in eqs. (2)–(3). However, this time we
consider the rate of change of the momentum of the
fluid inside the volume bounded by the surfaceSI

B
and the ambient free surfaceSI

W that would have
been the case if the ship had not disturbed the fluid.
The surfaceSI

B is the part of the hull surface that
lies below the ambient free surfaceZ = ζI

F(t). The
bounding surfaceSINT is now the disjoint sum of
the hull surfaceSI

B and the nonlinear waterlineSI
W:

SINT = SI
B+SI

W .

In this case, the velocity potential isφI . Since
Un = nnn ·UUU and∂/∂n = nnn ·∇, the final result given
by (3) is unchanged ifnnn is replaced by−nnn. The
normal is chosen to point into the volume enclosed
by SINT so that it matches the normal onST

B in pre-
vious equations. In (3),Un is the same as∂φI/∂n
onSI

W. After rearranging terms, the equation corre-
sponding to (3) is therefore

ρ©

∫∫

SINT

dS

(
∂φI

∂t
+

1
2

∇φI ·∇φI

)
nnn′

= ρ
∫∫

SI
B

dS

(
∂φI

∂t
+

1
2

∇φI ·∇φI

)
nnn′

−ρg
∫∫

SI
W

dSZnnn′ =

(7)
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= ρ
d
dt

©

∫∫

SINT

dSφI nnn
′

+ρ
∫∫

SINT

dS
(
∇φI ·nnn

′−UUU ·nnn′
)

∇φI

= ρ
d
dt

©

∫∫

SINT

dSφI nnn
′

+ρ
∫∫

SI
B

dS
(
∇φI ·nnn

′−UUU ·nnn′
)

∇φI

wherennn′ is an inward normal that points into the
body onSI

B and downward onSI
W.

We now add (7) to (6) while accounting for
the different meaning ofnnn andnnn′ on SI

W in the two
equations. The result is the disturbance forceFFFD

given by the equation

FFFD ≃−ρ
∫∫

SI
B

dS

(
∂φD

∂t
+

1
2

∇φD ·∇φD

+∇φD ·∇φI

)
nnn

≃−ρ
d
dt

∫∫

SI
B

dSφDnnn−ρ
d
dt

∫∫

SI
E

dSφDnnn

−ρg
∫∫

SI
E

dSζDnnn

+ρ
∫∫

SI
B

dS

(
∂φI

∂n
−Un

)
∇φI ,

which assumes that an integral overST
B is approxi-

mated well by an integral overSI
B. This is the part of

the dynamic force acting on the body that depends
on φD. The part that depends onφI but not onφD is
obtained from (7):

FFFF-K =−ρ
∫∫

SI
B

dS

(
∂φI

∂t
+

1
2

∇φI ·∇φI

)
nnn

−ρ
d
dt

∫∫

SI
B

dSφI nnn+ρ
d
dt

∫∫

SI
W

dSφI nnn

−ρ
∫∫

SI
B

dS

(
∂φI

∂n
−Un

)
∇φI

+ρg
∫∫

SI
W

dSZnnn

(8)

wherennn points into the body onSI
B and upward on

SI
W. The sum of the nonlinear Froude-Krylov and

disturbance forces is

FFF =−ρ
∫∫

SB

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ
)

nnn

≃−ρ
d
dt

∫∫

SI
B

dSφDnnn−ρ
d
dt

©
∫∫

SI
B+SI

W

dSφI nnn
′

−ρg
∫∫

SI
W

dSZnnn′

−ρ
d
dt

∫∫

SI
E

dSφDnnn−ρg
∫∫

SI
E

dSζDnnn

(9)

where the unit normalnnn′ points into the body onSI
B

and downward onSI
W.

The total force acting on the vessel may be ob-
tained by adding the force due to the hydrostatic
pressure in (9) as shown in the equation

FFFTOT =−ρ
∫∫

SB

dS

(
∂Φ
∂t

+
1
2

∇Φ ·∇Φ+gZ

)
nnn

≃−ρ
d
dt

∫∫

SI
B

dSφDnnn−ρ
d
dt

©

∫∫

SI
B+SI

W

dSφI nnn
′

(10)

−ρg©
∫∫

SI
B+SI

W

dSZnnn′

−ρ
d
dt

∫∫

SI
E

dSφDnnn−ρg
∫∫

SI
E

dSζDnnn,

wherennn′ points downward onSI
W and into the body

on SI
B. Three force components may be identified

in (10).

Nonlinear Buoyancy Force.

Applying the Gauss divergence theorem to the
third term on the right side of (10), we obtain

F̃FFH =−ρg©
∫∫

SI
B+SI

W

dSZnnn′ = ρg▽(t)kkk (11)

wherennn′ points into the enclosed volume. The non-
linear hydrostatic force given by (11) acts in the ver-
tical direction and on the volume of fluid enclosed
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by the ship wetted surface and the ambient wave
surface interior to the vessel. This buoyancy force
which results from the application of the momen-
tum theorem differs from the conventional hydro-
static force that acts on the open wetted surface of
the body and which in the nonlinear problem may
not point in the vertical direction.

Momentum Froude-Krylov Force.

The momentum Froude-Krylov force is the
time derivative of the impulse integral involving
just the ambient wave potential over the instanta-
neous ship surface:

F̃FFF-K =−ρ
d
dt

©

∫∫

SI
B(t)+SI

W(t)

dSφI nnn
′ . (12)

Again nnn′ points into the enclosed volume. The mo-
mentum Froude-Krylov force given by (12) differs
from the conventional Froude-Krylov forceFFFF-K

which involves the integral of the hydrodynamic
pressure due to the ambient wave over the instan-
taneous ship wetted surface. Although a different
force, expression (12) is simpler to evaluate numer-
ically since it does not involve the time derivative
and spatial gradients of the ambient velocity poten-
tial under the integral sign.

Momentum radiation and diffraction force.

The momentum disturbance force has a sim-
ilar form to its Froude-Krylov counterpart and in-
volves the disturbance radiation and diffraction ve-
locity potentials under the integral sign in the defi-
nition of the corresponding impulse

F̃FFD =−ρ
d
dt

∫∫

SI
B(t)

dS(φRAD +φDIF)nnn. (13)

An advantage of (13) relative to the conventional
definition of the nonlinear radiation and diffraction
forces is that no time derivative and spatial gradi-
ents of the disturbance potentials are present under
the integral sign in the definition of the disturbance
impulse. This is a significant advantage of (13)
which may be readily evaluated robustly assuming
knowledge of just the values of the disturbance ve-
locity potentials over the instantaneous ship wetted
surface.

Interpretation of Momentum Hydrostatic and
Froude-Krylov Forces

The momentum formulation derived above de-
composes the total ideal fluid force into three com-
ponents which are interpreted as the Momentum
Hydrostatic, Froude-Krylov (F-K) and Disturbance
Forces.

There exists an interdependence between the
hydrostatic and Froude-Krylov forces, the under-
standing of which in the nonlinear ship response
problem is essential for the study of the vessel
stability problem in steep waves. As pointed out
by Telste & Belknap (2008) and Belknap & Tel-
ste (2008), the nonlinear hydrostatic and Froude-
Krylov force may cancel each other out in certain
wave conditions, underscoring the significance of
the accurate evaluation of these forces and the re-
maining disturbance forces. The discussion below
explains how such a cancellation occurs.

The Momentum F-K Force

The derivation of the momentum hydrostatic
and Froude-Krylov forces entailed no approxima-
tions in the use of Bernoulli’s equation so they are
considered exact, given an accurate representation
of the kinematics of the ambient wave. The hydro-
static force always points upwards and its magni-
tude depends on the time dependent displaced vol-
ume of the vessel and is given by expression (11).

The nonlinear Froude-Krylov force given by
(8) may be reduced further by adding and subtract-
ing an integral over the nonlinear waterplane area
of the vessel over the ambient wave free surface in-
ternal to the vessel:

FFFF-K =−ρ
d
dt

©
∫∫

SI
B(t)+SI

W(t)

dSφI nnn
′+ρ

d
dt

∫∫

SI
W(t)

dSφI nnn
′

= F̃FFF-K +ρ
d
dt

∫∫

SI
W(t)

dSφI nnn
′ .

(14)

Herennn′ points downward onSI
W and into the body

on SB. In (14) the first integral is over a surface
enclosing the time dependent volume of the ves-
sel. The second integral is taken over the nonlin-
ear waterplane area and will be seen to be the non-
linear extension of the Froude-Krylov hydrostatic-
like restoring force acting on a floating vessel. For
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a submerged body this term vanishes. For a sur-
face piercing body and in the limit of small ampli-
tude waves which are long relative to the dimension
of the vessel this term is proportional to the heave
hydrostatic restoring coefficientC33ρgAW, where
AW is the static waterplane area, times the ambient
wave amplitude.

By applying Gauss’s theorem, the first term
may be reduced to a volume integral:

FFFF-K = ρ
d
dt

∫∫∫

▽(t)

dV∇φI +ρ
d
dt

∫∫

SI
W(t)

dSφI nnn
′ . (15)

The first term in (15) is the time rate of change of
the linear momentum of all the fluid particles of an
ambient wave enclosed by the time dependent vol-
ume of the vessel. In long waves the volume inte-
gral in (15) may to leading order be approximated
by evaluating the ambient wave velocity vector at
the centroid of the time dependent volume of the
vessel. It is noted that the location of this centroid
is time dependent.

The second integral in (15) has a familiar inter-
pretation within linear theory. Recall that the linear
dynamic free surface condition takes the form

ζI =−
1
g

(
∂φI

∂t

)

Z=0
.

Substituting in (15), exchanging the time differenti-
ations with the surface and volume integrations and
taking into account that the unit vector points inside
the volume we obtain the linearized version of the
momentum Froude-Krylov force

FFFF-K, LINEAR = ρ
∫∫∫

▽

dV
∂
∂t

∇φI

+ρgkkk
∫∫

SI
W(t)

dSζI .
(16)

The first term in (16) is the inertia component of the
momentum Froude-Krylov force which is equal to
the integral of the acceleration of the ambient wave
fluid particles within the linearized volume of the
vessel below the calm water surface, multiplied by
their density. The second term is the hydrostatic
contribution which is proportional to the integral

of the ambient wave elevation over the static wa-
terplane area of the vessel. For long waves this
integral may be approximated to leading order by
the product of the waterplane area and the ambi-
ent wave elevation at the origin of the coordinate
system. In this limiting case the hydrostatic com-
ponent of the momentum Froude-Krylov force, per
unit ambient wave elevation, reduces to the heave
restoring coefficient which appears in the left hand
side of the linearized vessel equations of motion.
As expected, for submerged bodies the hydrostatic
component of the momentum Froude-Krylov force
vanishes.

In large amplitude waves the hydrostatic com-
ponent of the Froude-Krylov force (15) may be
comparable to the time dependent buoyancy force
(11). Moreover, while the buoyancy force always
points vertically upwards, the hydrostatic compo-
nent of the Froude-Krylov force component has an
oblique orientation which is a function of the in-
clination of the ambient wave surface contained in
the unit normal vector. In the limit of linear theory
this Froude-Krylov hydrostatic force points verti-
cally upwards.

CONCLUSIONS

A new nonlinear momentum formulation has been
developed. This formulation leads to the explicit
decomposition of the total hydrodynamic force in
nonlinear hydrostatics, Froude-Krylov and wave
disturbance forces in steep random waves which are
easily amenable to computation. All force compo-
nents appear as time derivatives of the respective
hydrodynamic impulses, defined as spatial integrals
of the respective velocity potentials over the vessel
instantaneous wetted surface, which do not requite
the numerical evaluation of time derivatives of the
velocity potential over the vessel wetted surface.
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