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ABSTRACT 

The small motion assumption of linear seakeeping codes is well known.  The validity of this assumption is 
investigated by comparisons with a body exact non-linear seakeeping code over a range of significant wave 
height.  A metric based on relative motion is proposed to quantify the validity of the assumption and indicate 
up to what point linear seakeeping is appropriate. 
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1. INTRODUCTION 

Despite the advent of relatively computationally 
fast non-linear time domain seakeeping programs, 
there is still some use for linear strip-theory 
seakeeping programs.  Frequency domain programs 
can produce seakeeping predictions for many 
speeds, relative wave headings, and seaways in 
seconds of computation.  This is especially useful 
for including seakeeping in early design analysis of 
alternatives and calculating mission operability.  
Time histories based on linear response amplitude 
operators (RAOs) are also fast to compute and 
provide representative motions for ship system 
design/evaluation. 

The main assumptions of linear strip-theory 
seakeeping codes are well known.  The first is that 
calculations are preformed about the mean 
undisturbed waterline.  Hydrostatics, radiation, 
diffraction, and incident wave forces are all 
calculated on the submerged portion of the hull at 
the mean undisturbed waterline.  This is also stated 
as a “wall sided” and “small motion” assumptions.  
These descriptions explain in a physical sense what 
using the mean undisturbed waterline to define the 
submerged hull actually means.  “Wall sided” 
indicates that the hydrostatic properties are not 
changing as the ship moves.  “Small motion” 
indicates that the submerged geometry used for 
radiation, diffraction, and incident wave force 
calculations can be considered constant. O’Dea and 
Walden (1985) examined linear seakeeping with 
respect to bow flare and wave steepness. 

The other main assumption of linear strip-
theory seakeeping relates to the independence of 
the two dimensional strips.  The strips are assumed 
to be independent but in actuality flow from one 
will influence flow from strips further aft.  As a 
result low speed strip-theory is limited to Froude 
numbers less than 0.3-0.35.  Higher speed strip-
theories have been formulated.  This paper does not 
address the validity of using low speed strip-theory 
above Froude numbers of 0.3-0.35.   

Lastly, as a direct result of having a constant 
submerged volume, the equations of motion can be 
solved for a unit wave height and linearly scaled to 
higher wave heights.  This is most obviously seen 
with heavily damped heave and pitch motion.  
However, roll has non-linear damping and most 
linear seakeeping programs have some iterative or 
computational scheme to account for this and do 
not scale roll linearly with wave height. 

However, seakeeping predictions in very small 
waves, where linear seakeeping assumptions are 
valid, are not very useful.  Fortunately, the 
assumptions can be stretched and produce useful 
results at wave heights of interest.  This paper 
discusses a metric to identify when the linear 
seakeeping assumptions are more than stretched but 
broken. 

2. COMPARISON APPROACH 

The validity of linear scaling of results will be 
determined by comparing linear strip theory results 
with  non-linear time domain results for the same 
hull form, loading condition, and seaways.  Heave, 
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statistic.  Additionally, there may be some 
complementary metric based on variation in 
waterplane area that would improve selection of 
critical distance. 
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