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ABSTRACT 

The paper investigates the accuracy of the current formulation of the “critical wave groups” method for 
calculating the probability of extreme responses of vessels rolling in beam seas. The method employs short 
duration regular excitations to identify “critical” for ship stability wave events that cause slight exceedance 
of a given roll angle threshold. The probability of any exceedance of the roll angle threshold is then 
estimated by the probability of encountering any wave sequence higher than the determined critical, based on 
wave height and period distributions derived from spectral methods. In this study the “critical wave groups” 
method is extended by incorporating realistic wave group forms, characterized by high probability of 
occurence. Both the regular and the irregular wave group schemes are applied to evaluate the probability of 
exceedance for several roll angle thresholds for two ship models. To increase the accuracy of the approach, 
wave group statistics are obtained from direct simulations of the wave field rather than from spectral 
methods. The results are tested against Monte Carlo simulations of ship roll motion. 
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1. INTRODUCTION 

The study of large amplitude ship roll motions 
in stochastic beam seas is a non-trivial task 
expanding in both the fields of non-linear dynamics 
and probability. As known, roll statistics deviate 
from Gaussianity with increasing level of non-
linearity, leading to probability distributions with 
heavy-tailed structure (Belenky et al., 2016b). 
However, calculating the probability of extreme roll 
events by employing “brute force” methods suffers 
from a number of deficiencies. First, the accuracy 
of a “direct counting” definition of probability 
becomes questionable when dealing with rare 
events. At the same time, the fact that ship response 
is not essentially an ergodic random process in the 
case of a non-linear system further increases the 
computational burden for tracing the complex 
shape of the tails (Belenky et al., 1998).   

Several methods have been proposed to treat 
the so called “problem of rarity”, described in the 
above. Extrapolation methods employ statistics 
based on a limited number of realizations to predict 
the probability of an event that is too rare to be 
observed. The concept derives from Extreme Value 

Theory which provides asymptotic expressions for 
the distribution of the maximum of a sample of 
independent and identically distributed random 
variables. Thus, the objective is the estimation of 
the parameters of an extreme value distribution by 
fitting the latter to a set of experimental or 
simulation data. The method has been demonstrated 
in several studies and much effort has been put into 
addressing practical issues regarding its application 
for ship stability assessment (e.g., Belenky et al., 
2016a; Campbell et al., 2016). 

On the other hand, wave group methods offer 
an alternative solution to the problem by focusing 
on specific time intervals when dangerous wave 
events occur. One of them is the “critical wave 
groups” method which quantifies instability 
tendency through the probability of encountering 
any wave group that could have provoked the 
instability (Themelis and Spyrou, 2007). In the 
deterministic part of the method, regular wave 
trains are employed to identify critical, in terms of 
ship stability, height thresholds. Then, in the 
probabilistic part, the probability of encountering 
any wave sequence higher than the specified 
thresholds is calculated using distributions of wave 
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heights and periods derived from spectral methods. 
A first attempt to validate the concept was 
presented by Shigunov et al. (2012) who selected a 
modern 8000 TEU containership to calculate the 
probability of exceedance for a 40degrees roll angle 
threshold. The results were tested against Monte 
Carlo simulations and fair coincidence was noted in 
the case of beam seas excitation. 

As a next step, in this paper we employ the 
“critical wave groups” method to predict the 
probability of exceedance for a number of roll 
angle thresholds for two different ship models. At 
the same time, our recent work towards improving 
the determistic part of the approach is continued, by 
incorporating more realistic wave group forms. The 
idea is to identify critical wave events in terms of 
the “most expected” wave groups of a given sea 
state using the method developed by Anastopoulos 
et al. (2016). To eliminate the impact of spectral 
methods on the accuracy of the probabilistic part, 
desired height and period distributions are obtained 
from direct simulations of the wave field. Finally, 
the conditions under which the “critical wave 
groups” method produces comparable results with 
those obtained from Monte Carlo simulations of 
roll motion are investigated and the focus is set on 
the region of extreme responses where the accuracy 
of the latter is disputable. 

2. MATHEMATICAL FORMULATION 

In the field of ocean and coastal engineering, 
wave groups are traditionally considered as 
sequences of waves with heights exceeding a 
certain preset level and slightly varying periods 
(Masson and Chandler, 1993; Ochi, 1998). Despite 
that several threshold-based definitions have been 
utilized in the past to study wave groupiness 
measures, one would argue that, from ship 
dynamics perspective, wave groups are sequences 
of waves which are sufficiently high to provoke 
instabilities. 

Now, let us assume that we are interested in 
estimating the probability that a vessel exceeds a 
roll angle threshold ϕcrit . The key idea of the 

“critical wave groups” method is to first identify 
the wave events that cause the exceedance and then, 
calculate the probability of encountering them. The 
essence of the approach is presented below: 

(1) 

where ,k iwg  is a wave group event with 

characteristics i , determined for the thk  set of 

initial conditions { }0 0,ϕ ϕ  of the vessel at the 

moment of the encounter. From a preliminary 
investigation, Themelis and Spyrou (2008) 
concluded that for sea states of moderate severity 
the influence of initial conditions may not be very 
significant and thus, examining only the upright 

position of the vessel { } { }0 0, 0,0ϕ ϕ = , denoted by 

0=k , can be somehow acceptable: 

(2) 

Eventually, the method is implemented in two 
parts: a purely deterministic one, focused on the 
identification of the so called “critical” wave 
groups, i.e., those wave successions leading to only 
slight exceedance of ϕcrit ; and a probabilistic part 

to calculate the probability of encountering any 
wave group higher than the determined critical. As 
realized, the accuracy of the method depends 
explicitly on the shape of the critical wave groups 
which are in fact height thresholds for the wave 
events that result in ϕ ϕ> crit . 

 By assuming that individual wave group 
occurrences are independent events, eq. (2) is 
reformulated as (Themelis and Spyrou, 2007): 
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a set of mutually exclusive and collectively 
exhaustive events. To avoid possible overlaps in the 
calculations, it is convenient to identify wave 
groups with respect to their run length j , which is 

the number of consecutive heights exceeding a 
critical threshold: 

(4) 

where { }1,...,=i iH HH  and { }1,...,=i iT TT  are 

vectors of random variables referring respectively 
to the heights nH  and periods nT  of an individual 

wave group event with run length i  ( )1≤ ≤n i , 

{ }, ,1 ,,...,=cr i cr cr ih hh  is a deterministic vector for 

the heights of a critical wave group with run length 
i  and cr,mΤ  is the thm range within which the 

critical periods are considered to vary. In the case 
of regular wave groups the width wT  of all critical 

ranges ( )cr,  1,2,...,m m MΤ =  is fixed. 

Modelling of wave successions as Markov 
chains has been one of the most successful 
approaches in wave group theory. Kimura (1980) 
was the first to elaborate on wave group statistics 
assuming that wave heights and related periods are 
Markov processes. Ever since the concept has been 
tested several times against numerical simulations 
and real wave field measurements with remarkable 
success (e.g., Stansell et al., 2002). In this context, 
the probability of encountering dangerous wave 
groups with certain specifications, as in eq. (4), is 
expressed as: 

(5) 

where 1,2,...,m M=  denotes different cases of 

critical period segments and:  

 

(6) 

In the above, 
1 1, ,n n n nH T H Tf

− −
 is the conditional 

probability density function (PDF) of two 

consecutive wave heights and related periods and 

1 1,H Tf  is the joint PDF of the height and period of a 

single wave.  

Equation of roll motion 
In this study ship motion is modelled under the 

Froude-Krylov assumption using the following 
simple uncoupled equation, written in terms of the 
relative roll angle ϕ : 

(7) 

with 44I  and 44A  being the roll moment of inertia 

and the added moment of inertia, respectively, Δ  is 
the ship displacement, g  is the gravitational 

acceleration and D  is the damping moment: 

(8) 

The restoring arm in still water is given as: 

(9) 

When information about the roll response 
amplitude operator (RAO) is available, the wave 
induced moment is estimated from: 

(10) 

where ηηS  is the energy spectrum of the water 

surface elevation which is a stationary ergodic 
Gaussian process. Alternatively, in the presence of 
long incident waves, the concept of instantaneous 
wave slope at the middle of the ship α  can be 
employed (Wright and Marshfield, 1980):  

(11) 

Dividing eq. (7) by 44 44+I A  we finally obtain:   

(12) 

Construction of realistic wave groups 
Anastopoulos et al. (2016) extended the 

Markovian model of Kimura (1980) to develop a 
method for the systematic construction of irregular 
wave group profiles, characterized by high 
probability of occurrence. The key is to select the 
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height cH  and period cT  of the highest wave of 

the group to initiate the following iterative scheme: 

(13) 

 

(14) 

 

Now, let us assume that we are interested in 
generating a sequence of j  wave group heights and 

related periods with cH  and cT  occupying the thi  

position ( )1≤ ≤i j . Forward application of eqs. 

(13) and (14) will provide the heights and periods 
of the waves succeeding the initial (highest) one. 
Then, the “most expected” past outcomes are 
identified by applying the same procedure 
backwards in time. The calculation of the 
conditional expectation in eq. (13) precedes that of 
eq. (14) so as to take into account the correlation 
between the height and period of a predicted wave. 
The transition PDFs can be obtained either from 
spectral methods (Anastopoulos et al., 2016) or by 
analyzing data collected from Monte Carlo 
simulations of the wave field (Anastopoulos and 
Spyrou, 2016).  

The next step is to construct the continuous-
time counterparts of the generated sequences. To 
this end, we opt for a representation of water 
surface elevation η  of the form: 

 

(15) 

In our earlier studies the nf  basis functions were 

derived from the application of the Karhunen-
Loève theorem (Sclavounos, 2012). Here, aiming at 
reducing the computational cost related to the 
solution of the Karhunen-Loève eigen-problem, we 
employ the widely used Fourier basis functions. 
The number of terms kept in eq. (15) is selected so 
as to satisfy a set of geometrical constraints which 
ensure that the shape of the produced waveform is 
compatible with the predictions of eqs. (13) and 
(14). More details can be found elsewhere (e.g., 
Anastopoulos and Spyrou, 2016). It is noted 
however that the truncation order in eq. (15) is 

lower than the originally recommended ( )6 j  since 

it was recently observed that fewer terms were 
enough to generate desired waveforms. 

3. RESULTS AND DISCUSSION 

In this section, the “critical wave groups 
method” is applied to two different ship models in 
order to predict the probability of exceedance for 
several roll angle thresholds. Both regular and 
irregular wave group excitations are employed and 
the results are tested against Monte Carlo 
simulations of roll motion. To improve the overall 
accuracy of the approach, the PDFs of successive 
wave heights and periods appearing in eqs. (5) and 
(6) are computed from direct simulations of the 
water surface displacement instead of spectral 
methods. 

Regarding the construction of irregular wave 
group shapes, the transition probabilities in eqs. 
(13) and (14) were calculated according to the 
method described in Anastopoulos et al. (2016) 
with the only difference that the necessary 
correlation parameters were estimated from the 
generated wave data. In this way, the efficiency of 
the Markov model for determining the “most 
expected” wave height and period sequences is 
enhanced.  

Ship model 1 
An ocean surveillance ship, referred in the 

study of Su (2012), was selected as the first ship 
model. Main parameters of the vessel are given in 
Table 1.  

Table 1: Main parameters of the ocean surveillance vessel. 

Parameter Dimensional value 

44 44+I A  7 25.540 10  kg m× ⋅  

Δ  62.056 10  kg×  

1b  10.095 s−  

2b  0.052  

1c  21.153 s−  

3c  20.915 s−−  

 
The ship is assumed to operate in a sea state 
described by the modified Pierson-Moskowitz (PM) 
spectrum with significant wave height 4m=sH  

and peak period 6s=pT :  

(16) 
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were ωp  is the peak frequency. The wave induced 

moment is modelled using eq. (10) and the roll 

response amplitude operator ( )ωRAO  of the 

vessel is presented in Figure 1. 

 

Figure 1: Roll response amplitude operator ( )RAO ω  for 

ship model 1. 

For the simulations of the wave field, the model 
of Longuet-Higgins (1952) was adopted: 

(17) 

 
were εn  are random variables uniformly distributed 

over [ )0,2π , ωn  are the frequencies of the wave 

components and ωd  is the frequency resolution. In 
total, 18853 waves were analyzed from a set of 24 
records of 1 hour. Finally, statistics of roll motion 
were estimated without assuming the ergodic 
property for the response (Belenky et al., 1998). As 
a corollary, the analysis was performed on a 

collection of approximately 515 10⋅  short-duration 
realizations, sampled at a fixed time instant 

150s=st . 

In Figure 2 the iterative scheme of eqs. (13) and 
(14) is applied in order to predict the characteristics 
of the “most expected” wave groups of the 

examined sea state for various cases of  { },c cH T , 

values, here denoted by red nodes. The vertical axis 
shows the heights that derive from successive 
iterations and the horizontal axis shows the 
corresponding periods. The evolution of the 

procedure for a given set of { },c cH T  parameters is 

indicated by black crosses along the dashed lines. 
The root of this tree-shaped diagram is the 
stationary state of the Markovian system and the 
structure of the “most expected” wave groups 

depends on the distance of the highest wave from 
the root. 

 
Figure 2: Characteristics of the most expected height and 
period sequences generated for the PM spectrum. 

In Figure 3 the results of the Monte Carlo 
simulations (MC sim.) are presented in the same 
plot with the estimates of the “critical wave groups” 
method using regular wave groups with 6j ≤ . For 

the latter two different cases of critical period range 
widths wT  were studied. As illustrated, for roll 

angles below 40degrees the method consistently 
underestimates the probability of exceedance. This 
demonstrates that for intermediate roll angle 
thresholds it is rather unlikely that the exceedance 
has been provoked by wave grouping phenomena. 
For larger angles, however, the accuracy of the 
method is improved but it is sensitive to the 
selection of wT . The reason is that wT  is actually a 

measure of tolerance for the detection of resonant 
phenomena and as realized, the condition that 

wT 1s=  is possibly too strict. 

On the other hand, the method performs better 
for roll angle thresholds before the tail region in the 
case of irregular wave groups, as shown in Figure 
3. In this implementation, however, the method is 
sensitive to the maximum period of the highest 
wave c,maxT . The reason is that, for irregular wave 

groups, the critical period ranges cr,mΤ  are defined 

as the difference of the shortest from the longest 
period encountered within a generated sequence. As 
shown in Figure 2, for increasing cT  the highest 

wave progressively deviates from the mean period 
of the wave group and the critical period ranges 

cr,mΤ  become larger. Therefore, the tolerance for 

the detection of resonant phenomena is relaxed and 
the method overestimates the probability of 

( ) ( ) ( )2 cosηηη ω ω ω ε= + n n n n
n

t S d t
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exceedance. However, it is not clear at the moment 
if such cases should be included in the probability 
calculations since the period of the highest wave 
distorts the grouping character of the rest period 
sequence. 

 
Figure 3: Probability of exceedance for ship model 1 using 
regular wave groups. 

 
Figure 4: Probability of exceedance for ship model 1 using 
irregular wave groups. 

In the deterministic part of the method, critical 

wave group parameters, identified for 045ϕ =crit , 

are summarized in Figure 5 in the form Transient 
capsize diagrams. These are plots of the wave 
steepness of a critical wave group against its period, 
here normalized with the natural period of the 
vessel 5.9s=oT  (Rainey and Thompson, 1991). 

Regular wave groups are given by long dashed 
curves while irregular wave groups are represented 
both by their mean steepness (short dashed line) 
and by the steepness of the highest wave (solid 
line), always against the normalized period of the 
latter. As one obtains two boundary lines 
(depending on whether he employs the mean or the 

maximum wave group steepness), for the case of 
irregular wave groups, shading has been applied 
between the two lines in order to enhance the 
contrast against the regular-wave-groups line. For 

2=j , height thresholds defined by regular and 

irregular wave groups are, in the mean sense, 
relatively close. The shift of instability region 
towards the area of long waves has already been 
reported in Anastopoulos and Spyrou (2016). 
However, for 3=j  the dangerous zone is enlarged 

for the case of irregular wave groups. 

 
Figure 5: Transient capsize diagrams for ship model 1 for 
different run lengths j  and critφ = 45deg . 

Ship model 2 
A modern 4800 TEU Panamax containership 

with parameters listed in Table 2 and natural period 
15.2s=oT  is the second ship model that was 

studied. The restoring arm coefficients in eq. (9) 
were provided directly from the loading manual of 
the vessel. Since no information was available 
about the RAO function, wave excitation was 
approximated by eq. (11). 

In this application the JONSWAP spectrum, 
given in eq. (18), with parameters 10msH = , 

14spT =  and 1.932γ =  was selected to describe 

the sea state of operation. In the same spirit, 24 
records of 1 hour length were generated according 



 

   

Proceedings of the 16th International Ship Stability Workshop, 5-7 June 2017, Belgrade, Serbia 7 

to eq. (17), corresponding to a total population of 
7875 waves. Monte Carlo simulations of roll 
motion were performed with the same setup as for 
ship model 1, however sampled at 200s=st . 

(18) 
 

Table 2: Main parameters of the Panamax containership. 

Parameter Dimensional value 

44 44+I A  10 21.122 10  kg m× ⋅  

Δ  76.820 10  kg×  

1b  10.043 s−  

2b  0.056  

1c  21.667 s−  

3c  23.161 s−  

5c  210.634 s  −−  

7c  28.349 s−  

9c  22.150 s  −−  

 
The results obtained from the implementation 

of the “critical wave groups” method when ship 
model 2 is excited by regular and irregular wave 
groups is shown in Figures 6 and 7, respectively. 
Again, for intermediate angle thresholds, better 
predictions are achieved by irregular waveforms. In 
the tail region, direct simulations of roll motion 
(MC sim.) fail to predict exceedances due to the 
problem of rarity while, in the same range, both 
schemes of the “critical wave groups” method yield 
reliable estimates. 

 
Figure 6: Probability of exceedance for ship model 2 using 
regular wave groups. 

Finally, Figure 8 compares regular and irregular 
critical wave groups with run lengths 2=j  and 

3=j  in terms of their individual probability of 

exceedance jP . The calculations were made for the 

critical period parameters that provided the best 
agreement with the simulation results according to 
Figures 6 and 7. Thus, wT 2s=  and c,maxT 15s=  

were selected for the regular and the irregular case, 
respectively. The contribution of run lengths with 

6j >  to the total probability of exceedance was 

found negligible.   

 
Figure 7: Probability of exceedance for ship model 2 using 
irregular wave groups. 

 
Figure 8: Contribution of individual run lengths j  to the 
probability of exceedance for ship model 2. 
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4. CONCLUDING REMARKS 

In this study the “critical wave groups” method 
was applied to predict the probability of large-
amplitude ship motions in beam seas. The method 
was extended by incorporating realistic wave 
excitations representing the “most expected” wave 
groups of a sea state. Both the regular and the 
irregular wave group schemes were applied to two 
different ship models to estimate the probability of 
exceedance for several roll angle thresholds and 
comparisons with Monte Carlo simulations of roll 
motion were presented. The results indicate good 
coincidence in the tail region where the efficiency 
of direct simulations is generally low. For 
intermediate roll angle thresholds the “critical wave 
groups” method performs better when irregular 
wave groups are employed due to realistic 
modelling of wave period successions. However, 
the probability calculations are sensitive to the 
degree of variability that is allowed in the wave 
period groupings. The extent up to which wave 
group period variations are responsible for resonant 
phenomena is a topic of future research. 
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