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ABSTRACT 

In order to establish a control method for automatic dangerous situations avoidance using an onboard 
monitoring ship motions data, a time series model for model predictive control is investigated. A radial basis 
function-based state-dependent autoregressive (RBF-AR) model is selected, since it is confirmed that the 
model is effective to predict nonlinear phenomena. As to the parameter estimation of RBF–AR coefficients 
and so on, the structured parameter optimization method is focused on, moreover it is improved that their 
method to an algorithm to realize on-line analysis. In order to verify the effectiveness of the proposed modeling 
procedure, off-line analysis using model experiment data is carried out. As the results, it is confirmed the 
effectiveness of the proposed procedure, although several future tasks exists. 

Keywords: RBF-AR model, AIC, Simplified structured parameter optimization method. 

 

1. INTRODUCTION 

Planing crafts in irregular seas are subject to 
excessive acceleration due to the waves they 
encounter. In the worst case, marine accidents such 
as injuries of passengers and crew and hull damage 
occur (e.g. Japan Marine Accident Tribunal 2017). 
In order to prevent such the situation, it is necessary 
for ship’s crews to understand the characteristics of 
encounter waves. This is called “sharp lookout” in 
maritime terms. 

As to a way of the sharp lookout, there are visual 
observation and RADAR and so on. If a captain, 
officers and crews, namely, ship operators can 
handle the situation well, then basically it can 
prevent marine accidents caused by waves by the 
sharp lookout with these ways. If such a premise 
does not satisfy, then marine accidents occur as 
described above. Therefore, in order to prevent 
marine accidents under wave conditions beyond the 
capacity of ship operators, it is necessary to develop 
a system that supports decision making of ship 
operators and an automatic control system to avoid 
dangerous situations. To realize this purpose simply, 
it is necessary only to monitor the ship motions 
appropriately according to the knowledge of 
statistical science. In recent years, many inexpensive 

and highly reliable measuring devices have been 
developed, so the monitoring of ship motions has 
become relatively easy (Sasa et al., 2015). Thus, the 
idea as the mentioned here is feasible. 

As to a general displacement type ship, a 
decision making support system using ship motions 
data had been already proposed by Iseki and Terada 
(2001). However, there are no studies on decision 
making support systems in planing crafts. With 
regard to the automatic dangerous situation 
avoidance system, neither research on displacement 
type nor research on planing crafts has been 
conducted. The reason for this is that because the 
motion of the planing craft is highly nonlinear, it is 
difficult to construct a mathematical model or a time 
series model. 

In this research, a time series model for model 
predictive control is investigated for the purpose of 
establishing a control method for automatic 
dangerous situations avoidance using an onboard 
monitoring ship motions data. A radial basis 
function-based state-dependent autoregressive 
(RBF-AR) model (Vesin, 1993) as a time series 
model to predict nonlinear phenomena is focused on. 
As to the modeling procedure of it, the parameter 
estimation procedure proposed by Peng et al. (2002) 
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is focused on, because it can realize the stable 
computation for the parameter estimation. In order 
to verify the effectiveness of the model, off-line 
analysis using model experiment data is carried out. 
Obtained findings are reported in detail. 

2. RADIAL BASIS FUNCTION-BASED 
STATE-DEPEND AUTOREGRESSIVE 
MODELING PROCEDURE 

The RBF-AR model is expressed as 
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where yn is the measured time series and εn is the 
normally distributed white noise in the observed 
noise with mean 0 and variance σ2, and 
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where zk denotes the center of the RBF network, and 
λk is the scaling parameter. ck (k = 0,…, M) and ci,k (k 
= 0,…, M) are the weighting coefficients, L and M 
are the orders of regression, nx is the dimension of 
vector xn−1, and ║∙║2 is the L2 norm, respectively. 

The unknown parameters in equation (1) are 
estimated using a method introduced by Peng et al. 
(2002). In this method, by assigning suitably 
assumed values for zk and λk, the problem changes 
into that of the least squares estimation of the linear 
parameters ck and ci,k. Subsequently, the estimated 
values to the linear parameters are assigned and zk 
and λk are estimated by the Levenberg–Marquardt 
method, which is a nonlinear optimization method. 
Iterative calculations are then performed until the 
convergence condition is satisfied and the final 
estimates of each parameter are obtained. The best 
model is determined by using the Akaike 

information criterion (AIC) (Akaike, 1974) shown in 
equation (6). 
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where N is the data number for the fitting of the 
RBF-AR model, and ̂ 2 is the variance of the 
residual of the fitting, and s is the total number of the 
parameters.  

In order to evolve a process suitable for online 
analysis, the method adopted in the present study 
skips the iterative calculation of cases where the 
fitting in the initial calculation is poor. Thus, we 
were able to neglect the unnecessary calculations for 
model selection. 

3. TECHNIQUE FOR FAST COMPUTATION 
OF PARAMETERS 

In this study, as mentioned before, the planing 
craft which is high speed as the target ship is focused 
on. Thus, in order to perform the on-line analysis, it 
is needed to calculate at high speed for the parameter 
estimation. Then, in order to evolve a process 
suitable for on-line analysis, the method adopted in 
the present study skips the iterative calculation of 
cases where the fitting in the initial calculation is 
poor. That is, it is able to neglect the unnecessary 
calculations for model selection. By this processing, 
high speed calculation for the modeling is realized. 

4. OFF-LINE ANALYSIS USING MODEL 
EXPERIMENT DATA 

4.1 Outline of model experiments 

To verify the effectiveness of the proposed 
procedure, an off-line analysis using model 
experiment data is conducted. In the model 
experiment, the object ship is toward at the constant 
speed in irregular waves, and the vertical 
acceleration of the bow is measured by an 
acceleration sensor made by Kyowa Electronic 
Instruments Co., Ltd. That is, the object ship is 
towed at 25 knots in actual scale, and the 
acceleration measurement is done at the sampling 
interval 200 Hz. Fig. 1 shows the experimental set 
up and the definition of coordinate system. As shown 
this figure, the acceleration upward is positive. Table 
1 and Fig. 2 show principal particulars in the actual 
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scale and the body plan of the object ship, 
respectively. Table 2 shows the wave condition in 
the actual scale. In this case, the mean period of 
waves is calculated by the Equation (7). Equation (8) 
shows the shape of spectrum proposed by the 
International Ship and Offshore Structures Congress 
(ISSC, 1964), and irregular waves are reproduced 
based on this equation. 
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where, ω is an angular frequency of waves. 
 

 
Figure 1: Schematic view of experimental set up and the 
definition of coordinate system. 

 

Table 1: Principal particulars of the object ships in actual 
scale. 

Scale of model: 1/s 1/23.4 
Water line length: LWL [m] 21.46 
Breath: B [m] 4.0 
Deadrise angle at s.s. 5: β [deg] 16.0 
Draft: d [m] 0.76 
Displacement [ton] 37.0 

 

Table 2 Wave condition in actual scale. 

Significant wave height H1/3[m] 2.0 
Mean wave period T1[s] 5.5 

 

 

 
Figure 2: Body plan of the target ship. 

4.2 Example of prediction results 

In this subsection, the one example of prediction 
results is shown. As to the prediction based on the 
RBF-AR modeling, from the view point of 
computational time, it is decided that the maximum 
of model order L is 10, the maximum value of the 
number of center of the RBF network M is 3 and the 
maximum value of the dimension nx of state vector 
is 3, respectively. Here, Fig. 3 shows the result of the 
30th step ahead prediction, namely the prediction for 
1.5 seconds, in which the number of data N for the 
fitting of the RBF-AR model, which is called ”Batch 
data”, is 300. In this figure, the horizontal axis 
indicates the time, and the vertical axis indicates the 
vertical acceleration. Moreover, the black line 
indicates the measured data in the experiment, and 
the dotted red line indicates the predicted one. As 
you can see, the predicted data captures the tendency 
of the measured one. Thus, it is consider that the 
proposed procedure has the possibility to predict the 
vertical acceleration such that the strong 
nonlinearity. 

 

 
Figure 3: Comparison with the measured time history and 
predicted vertical acceleration. Note that this figure does not 
include the data set of the analysis. 

 

4.3 Verification of accuracy 

In the previous subsection, the usefulness of the 
proposed procedure is confirmed. 
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In this subsection, as to the recursive fitting of 
the RBF-AR model, the accuracy of the proposed 
procedure in detail more is verified. That is, the 
several off-line analysis in which the number of 
prediction step and the number of data N for the 
fitting of the RBF-AR model are changed is carried 
out. The conditions for the verification is 
summarized in Table 3. Here the measured data as a 
notation AExp, and the predicted one as a notation APre 
are defined respectively. Firstly, the dispersion 
relationship between the AExp and the APre based on a 
root mean squares (RMS) of them, which expresses 
the following equation, is investigated. 
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In this case, it is evaluated that “RMS > 500 
(m/s2)” is a failed prediction. Fig. 4 shows one of the 
example for the time series of RMS and measured 
vertical acceleration. In this figure, the horizontal 
axis indicates the time, the left side vertical axis 
indicates the measured vertical acceleration and the 
right side vertical axis indicates the RMS. Moreover, 
the upper figure shows the result of the condition in 
which N=400 and n(Pre)=30, and the lower figure 
shows the result of the condition in which N=500 and 
n(Pre)=5. From these figures, it can be seen that when 
an impact acceleration occurs, the value of RMS 
exceeds the threshould value 500 and the evaluation 
of the result is the failed prediction. This tendency 
regarding other cases is also confirmed, although the 
ratio of divergence varies depending on the 
combination of the N and n(Pre). This result is caused 
by calculating RMS using all values in the prediction 
period n(Pre). Basically, the phenomena dealt with 
here is strongly nonlinear. Therefore, even if the 
prediction of several steps ahead can be achieved 
successfully, there are many events in which the 
prediction result diverges in the subsequent 
prediction period. The results shown here express 
this fact well and it is necessary to decide the 
prediction period after making sufficient 
consideration. It should be noted that as to one ahead 
prediction the result can predict the mesured one 
well. 

 

 

Table 3: Conditions for the verification. 

Number of the Batch Data for 
the model fitting: N 

50, 100, 200, 300, 
400, 500 

Number of the prediction period: 
n(Pre) 

5, 10, 20, 30 

 
It is certain that there are cases where it can be 

predicted well, although there are the failed 
prediction in the several conditions. Thus, the all 
combinations of the N and the n(Pre) as shown in Fig. 
5 are investigated secondly. In this figure, the 
horizontal axis indicates the N, and the vertical axis 
indicates the rate in which RMS diverges, 
respectively. As to each symbol, as shown in the 
figure, the circle indicates the results of n(Pre)=5, the 
square indicates the results of n(Pre)=10, the diamond 
indicates the results of n(Pre)=20, and the triangle 
indicates the n(Pre)=30, respectively. This figure 
shows the following. 

(1) The more N and the less n(Pre), the rate in which 
RMS diverges is smaller. 

(2) When the N exceeds 400 samples, the ratio of 
divergence is almost the same. 

Therefore, it is considered that as to the data number 
N for the model fitting, it is desirable to use more 
than 400 samples, although the problem of the 
computational time for the model fitting exists. 
 

 
Figure 4: Time series of RMS and measured vertical 
acceleration; Upper figure: N=400, n(Pre)=30, Lower figure: 
N=500, n(Pre)=5. 
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Figure 5: The ratio of divergence of RMS for each conditions 
for verification. 

 

5. CONCLUSIONS 

In this research, a time series model for model 
predictive control in order to establish a control 
method for automatic dangerous situations 
avoidance using an onboard monitoring ship 
motions data is investigated. Concretely, a radial 
basis function-based state-dependent autoregressive 
(RBF-AR) model as a time series model to predict 
nonlinear phenomena is focused on. As to the 
modeling procedure of it, the structured parameter 
optimization method as the parameter estimation 
procedure is focused on, their method to an 
algorithm for realizing on-line analysis is improved. 
In order to verify the effectiveness of the model, off-
line analysis using model experiment data is carried 
out. Obtained findings are summarized as follows: 

(1) As to the prediction used the Batch Data, it can 
be seen that the predicted results are good 
agreement with the measured data as shown in 
the subsection 4.2. Therefore, the proposed 
procedure is useful for the prediction of the 
vertical acceleration in the batch data analysis. 

(2) As to the recursive fitting of the RBF-AR model, 
the predicted results diverge sometimes in 
meaning of the root mean square (RMS). This 
cause is the calculation of the RMS using all 
values in the prediction period. 

(3) However, the more data for the model fitting and 
the less prediction period, the rate in which RMS 
diverges is smaller. Moreover, if the data for the 
model fitting exceeds 400 samples, then the ratio 
of divergence is almost the same. 
As a future task, it is needed to investigate to 

improve the accuracy of prediction. 
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