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ABSTRACT

Large amplitude ship motion often results from nonlinear aspects of hull geometry and wave
excitation. As a result, large amplitude ship motion occurs infrequently, making direct simulation
problematic. Statistical extrapolation is a methodology to assess the probability of large amplitude
ship motion from shorter duration simulations or model test data that may not contain such large
motion. The validation process involves the fitting of an extreme value distribution to data,
generation and identification of a “true value,” and formulation of a comparison such that a
definitive answer can be made.

This paper presents a worked numerical example of statistical extrapolation considering large
amplitude roll, pitch, vertical acceleration, and lateral acceleration. Examining different motions
addresses different types and levels of nonlinearity. Data are fit with the Generalized Pareto
Distribution to formulate a statistical extrapolation. The generation of a “true value” for
comparison is discussed. Lastly, the formulation of three-tier acceptance criteria is demonstrated to
fully answer the question of statistical extrapolation accuracy. The paper will stress the desired
traits and interactions between the main parts of extrapolation, true value, and acceptance criteria.

Keywords: statistical extrapolation, validation, non-linear motion

physical understanding to recognize it as the
true value.
1. INTRODUCTION
Focusing on the phenomena of large motion
The validation of numerical simulations is and capsizing, the true value is at once both
addressed by various professional societies and non-linear and rare. The simulation of these
governmental bodies for many engineering phenomena requires advanced, hydrodynamic
disciplines. There are established verification blended method prediction tools due to the
and validation outlines, guides, and processes non-linearity involved (de Kat and Pauling,
to follow when performing numerical 1989; Lin and Yue, 1990; Shin et al., 2003).
simulation verification and validation (AIAA, Furthermore, the ITTC parametric roll study
1998; ASME, 2009; ITTC, 2011). These (Reed, 2011; ITTC Stability in Waves, 2011)
processes and guides are often generalized with showed the uncertainty can be quite large due
details left to the engineers actually performing to practical non-ergodicity.  This further
the verification and validation. Validation at its increases the difficulty in understanding the
core consists of a comparison between the result of the validation effort and achieving a
simulation and the “true value,” and becomes definitive result.
the basis for a validation decision. The true
value comes from scale model testing or higher This paper continues Smith (2014) and
fidelity simulations and implies enough Smith and Campbell (2013) by providing a
complete worked example to demonstrate a
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multi-tiered validation approach with large
amplitude motions and accelerations including
statistical extrapolation of rare events.

2. TEST CASE

This test case considers ship roll and pitch
motion and lateral and vertical acceleration for
a range of relative wave heading in a high sea
state. Extrapolations are made based on a sub-
set of time history data and compared to a
directly counted true value at a motion level
not necessarily seen in the data sub-set.

2.1 Extrapolation Method

Following (Smith, 2014), this paper uses
the extrapolation technique based on
Generalized Pareto Distribution (GPD) as
implemented by Campbell, et al, (2014). GPD
can be used to approximate the tail of any
distribution that makes use of a scale and shape
parameter to fit the data. There are various
implementation details in terms of selecting a
threshold and determining the scale and shape
parameter.

The confidence intervals for the
extrapolated estimate were calculated using
two approaches assuming a normal distribution
of the GPD parameters. The first is based on
the confidence interval of the GPD parameters
and generation of a boundary based on the
upper and lower extremes of the possible
combinations. The second follows the
confidence interval method from Campbell, et
al, (2014) except the logarithm of the scale
parameter was used instead of the scale
parameters itself. The use of the logarithm of
the scale parameter ensures its positive value.
These are referred to as the boundary CI and
logarithm CI in this paper.
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2.2 True Value

The true value was determined by
calculating hundreds of thousands of hours of
ship motion simulation using a fully coupled, 3
degree of freedom (DOF) simulation tool based
on volume calculation (Weems and Wundrow,
2013, Weems and Belenky, 2015). This model
assumes constant radiation and diffraction
forces with non-linear hydrostatics on 2D strip

hull representation. As such it captures
essential  hydrostatic =~ non-linearity  and
maintains very fast computation time. Note

that in the case of validation against model test
data, the true value is typically characterized by
some non-negligible amount of uncertainty
related to instrumentation and sampling
limitations. =~ By simulating against large
amounts of simulated data, this uncertainty can
be reduced such that a single true value may be
identified.

The appropriateness of the 3DOF simplified
simulation tool was checked by comparing
various instantaneous roll and pitch parameters
to those same parameters as calculated with a
higher fidelity, 6 DOF blended simulation tool
(Lin and Yue, 1990). The parameters
compared dealt with the roll and pitch restoring
force such as metacentric height, area under
GZ curve, and peak of the GZ curve. The most
useful comparison was plotting instantaneous
roll angle and GZ value. Due to the difference
in degree of freedom, the simulation tools
could not be compared time step by time step
for the same wave realization. The
determination of appropriate and adequate
physical representation was based on general
agreement between the 3DOF and 6DOF
simulations (Weems and Belenky 2015).

The peaks were extracted using an envelope
approach (Belenky and Campbell, 2012). This
method ensures independent data samples as
required to apply GPD. The true value of the
exceedance rate is found using a direct
counting procedure studied in detail in Belenky
and Campbell (2012).
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3. VALIDATION APPROACH

This example expands the multi-tier
validation approach consisting of a parameter,
condition and set criteria to include vertical and
lateral acceleration (Smith, 2012). The three
tiered structure reflects typical scale model data
structures of individual motion channels, a run
condition of speed-heading-seaway, and a test
consisting of many conditions. Criteria are set
to determine an acceptable parameter
comparison, and what constitutes an acceptable
condition and overall set.

A parameter comparison, Tier I, is the
elemental comparison between the simulation
and true value. It refers to a single motion or
response. Choosing an appropriate parameter-
level comparison metric depends largely on the
problem under examination. Metric options
typically share underlying principles and utilize
similar properties of the sample data to draw
conclusions. They tend to differ in terms of the
specific information they provide about each
comparison. Some metrics produce binary
outcomes (pass or fail) while others provide
quantified measures of correlation.  Smith
(2012) discusses possible comparisons for
motions.  Further discussion of comparison
methods appears later in this paper.

Tier II is a condition comparison. Typically,
a condition is the environment, speed and
heading used to define the simulation and the
associated motion response. So a set of
environmental descriptors (e.g. significant
wave height, period, etc.), speed and heading
and four motions would be four conditions due
to the four motions. Thus, a condition can be
defined as a deterministic vector:

S :(HS’Tm’I/SDB’idx) (1)

where Hg is a significant wave height, T,
modal frequency, Vs, forward speed, PB-
heading, i; —motion index (say, in—4
corresponds to roll). This considers motions or

parameters independently and Tier II mirrors
Tier 1.
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Alternatively, motions (parameters) can be
considered collectively with all or multiple
motions (parameters) being included in the
condition definition. Then the number of
passing motion (parameter) responses becomes
a criterion for a condition passing. This is a
more stringent criterion to pass with slightly
different bookkeeping. The Tier II criterion
defines what constitutes a passing condition in
terms of number or combinations of passing
Tier I comparisons.

Tier III, the set comparison, defines how
many conditions have to pass for the
simulation to pass the validation criteria. The
condition definition needs to be considered in
setting the Tier III validation criteria to avoid
an impossible criterion.

There is an inter-relationship between the
parameter comparisons, second tier condition
definition and third tier acceptance levels.
Other  parameter  comparisons  besides
confidence interval capture of the true value
may be used depending on what is important to
the application. For instance, the amount of
conservatism or absolute difference may be
used as a metric. A change of the parameter
comparison could change the condition criteria.
The multi-tier validation definition used in this
study provides a check on both the
extrapolation and the confidence interval
formulation as both are included in the
parameter comparison.

For this example, the parameter comparison
is the comparison of a statistical extrapolation
to the true value at a specified critical motion
level. The parameter comparison passes the test
if the extrapolation confidence interval captures
the true value. Multiple extrapolations are
made from different data sets all representing
the same condition, that is speed-heading-
seaway-motion combination. A  condition
passes if the true value is captured by the
confidence interval at a percentage roughly
equal to the confidence probability. This is
repeated for a number of different conditions.
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The extrapolation method is considered valid if
a high percentage of conditions pass.

These acceptance criteria assume a valid
confidence interval formulation. As two
confidence interval calculation methods are
assessed, this example also serves as a
validation of the confidence interval calculation
method.

4. FURTHER PARAMETRIC
COMPARISONS

The validation approach described above
examines the effectiveness of the method used
to calculate the confidence interval on the
extrapolated value. If the acceptance criteria
are passed, we have demonstrated that the 95%
confidence interval for any given population
sample set does indeed capture the true
population value 95% of the time. Once we
have confidence that our methods can
accurately calculate the uncertainty associated
with an extrapolated value, the extrapolated
values and their associated uncertainty can be
used to validate the simulation tool’s ability to
model real ship motions. This section discusses
parameter comparisons appropriate for non-
rare and rare comparisons between simulation
data and model test data as an expansion of
Smith (2012, 2014). The comparisons
discussed are: confidence interval overlap,
hypothesis testing, and quantiles (percentiles).

4.1 Confidence Interval Overlap

Confidence interval overlap is a
straightforward comparison metric which
provides an unambiguous outcome applicable
to both non-rare and rare comparisons. Note
that the application of the confidence interval
overlap metric described earlier for validation
of the confidence interval formulation is
distinctly different from its use as validation
metric for comparisons between simulation and
model test data. When evaluating the
confidence interval formulation, a true value is
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known and there are many sample sets of the
population from which to draw conclusions.
For model test comparisons, the “true values”
from two populations (model and simulation)
are being compared, and only one sample set
from each population is available. ~When
validating simulation results against model test
data, confidence intervals are calculated at a
specified confidence probability for both sets
of sample data; if the intervals from both sets
overlap one another, the comparison is
considered successful. However, the existence
of overlapping 95% confidence intervals does
not necessarily signify a 95% chance that both
samples share the same underlying population
characteristics. The combined probability that
the true population values of both data sets lie
within the overlapped interval range is
significantly less than 95% and depends on the
lengths and relative position of both confidence
intervals.

The interval overlap metric also provides no
information about the probability of differences
between the populations. For example,
significant overlap of relatively long intervals
(high uncertainty) suggests that both
populations lie on the same interval; but if the
interval is large, the populations could be very
different. Alternatively, if intervals are very
small, this metric can reject comparisons when
population differences are very (perhaps
acceptably) small. A perhaps undesirable
characteristic of the interval overlap metric is
that comparisons are inherently less likely to
pass the criteria as uncertainty is reduced.

The confidence interval on the difference
between parameter populations is an extension
of the interval overlap method. The level of
significance is associated with the comparison
(i.e. a form of combined probability), rather
than with each individual data set. The extents
of the confidence interval on the difference
provide information about how similar and
how different the populations are likely to be.
A 95% confidence interval on difference
provides the range of values for which the
following is true: there is a 95% probability
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that the true difference between the two
populations lies within that range. Setting
limits on the allowable difference (including
uncertainty) forms a pass/fail application of
this comparison metric. Unlike the interval
overlap method, this criterion does not become
more difficult to pass when the data are more
well-known (less uncertainty). In addition, the
difference (including uncertainty) can be used
to quantify the simulation’s overall level of
accuracy. For example, basic statistics
(minimum, mean, etc.) of the observed lower
uncertainty limits across Tier I comparisons
quantify the amount of under-prediction and
provide information on safety margin for
simulation results.

Another metric making use of the
confidence interval is the maximum
conservative distance (MCD) which is the
difference between the extrapolation upper
confidence level and the true value. The upper
confidence level is often the “not to exceed”
limit. Maximum conservative distance then
provides a direct measurement of accuracy of
the important parameter.

4.2 Hypothesis Testing

Hypothesis testing on the difference
between population statistics is another way to
associate a level of significance with a
quantified measure of correlation agreement
based on two sets of sample data. Formulation
of an appropriate null hypothesis is integral to
applying this metric. =~ When attempting to
identify evidence of good correlation that
cannot initially be assumed to exist, the null
hypothesis should be contrary to the outcome
desired. Formulated this way, strong evidence
must be present in the sample data to reject the
null hypothesis (acceptance of desired
outcome).

For example, the following null hypothesis
for a one-tailed Student’s t-test may be well-
suited as parameter-level criteria metric: the
difference between the population mean
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significant single amplitude (SSA) values is
greater than a specified amount. The level of
significance used in the test dictates the
probability of wrongly rejecting the null
hypothesis. For the given null hypothesis, it is
possible to quantify (and set to an acceptably
low level) the probability of incorrectly
identifying good correlation. The probability
of failing to correctly identify good correlation
is not associated with a specific probability
(often known as the Type II or beta error);
while this value is of interest, it is typically of
less concern than incorrectly identifying poor
correlation as good correlation. By defining
both a specific limit on the allowable
population  difference and a level of
significance for the test, the Student’s t-test can
provide a pass/fail outcome for the comparison.

Alternatively, by specifying the level of
significance and solving for the critical value of
the limit on the difference allowed to pass the
test, a quantified measure of correlation
agreement is produced. Similarly, by
specifying the limit on the difference and
solving for the critical level of significance to
pass the test, the probability associated with
success of the comparison is produced; see
Appendix A. Both the quantified measure of
agreement and probability of test success are
comparison outcomes which can be used to
develop measures of correlation across multiple
comparisons. The beta error is not explicitly
calculated in this process.

Hypothesis tests rely upon measures of the
variance in both populations; for comparison of
extrapolated values, the confidence intervals on
the extrapolated values can be used to calculate
the parameters necessary for hypothesis test
calculations.

4.3 Percentiles — Rare Comparisons

To make comparisons farther out on the tail
of the motion distribution, a cumulative
distribution of the measured peaks is useful.
The cumulative distributions or quantiles can
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be compared at specific percentiles with
uncertainty bands. Uncertainty bands at any
percentile can be calculated using the normal
approximation to the binomial distribution
(Belenky and Campbell, 2012).

Percentiles comparisons across the range of
available data (shown as a Quantile-Quantile
(Q-Q) plot) provide strong visual indications
about model and simulation correlation across
the distribution of ship response. However,
establishing parameter criteria metrics to
quantify correlation (including uncertainty)
across a range of percentiles is challenging;
applying comparison metrics at one or more
discrete  percentile of peak values s
recommended.

One should be cautious when deciding at
which percentile to apply parameter criteria
comparison metrics. Data at the highest
percentiles are prone to large sampling
uncertainties; repetition of an ensemble of runs
often leads to very different values of the 99th
percentile of roll peaks due to the small number
of samples associated with extreme motions.
The 90th percentile of ship motion peak
responses has been observed to be a stable
level at which quasi-rare behavior can be
observed without being obscured by very large
uncertainty. Note that high percentile of peak
values are related to threshold exceedance rate.
Both high percentiles of peaks and exceedance
rates are useful parameters for which non-rare
motion channel criteria may be applied, though
percentiles tend to lend themselves more easily
to the definition of margins and limits. The
authors have not yet attempted to apply this to
extrapolations.

5. RESULTS

Ten of thousands of hours simulated ship
motions were calculated using the 3DOF
simplified simulation tool in large sea states for
a range of heading. The seaway was a 9.5 m
significant wave height and 15 sec modal
period with a Bretschneider spectral shape.
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The headings ranged from near following (15
deg) to bow seas (135 deg). The headings were
15, 30, 45, 60, 90, and 135 deg. The speed was
12 knots for all cases.

The total exposure time was accumulated
by ensembling many half-hour simulations.
Each simulation had a unique set of random
phases to generate a unique and independent
wave realization. Time histories of roll, pitch,
vertical acceleration, and lateral acceleration
were analyzed to extract peaks. This
distribution of peaks is the true value for each
heading-motion combination. The length of
exposure time varies between headings as a
matter of convenience. The difference in
exposure time does not affect the validation
results beyond potentially limiting the
maximum comparison value.

Around 100 extrapolations were made with
sub-sets of the total exposure time for each
heading-motion combination. ~ The use of
multiple extrapolations allows for a direct
check on confidence interval formulation and
gives understanding of data sub-set dependency.
The data sub-set exposure time was either 50
hours or 100 hours depending on the number of
peaks extracted, with 50 hours being used for
cases with more peaks. This was due to a
memory limitation on the analysis software.

The extrapolations were compared to the
true value at an evaluation level corresponding
to a high motion level in the true data set. The
comparison was based on overlap of the 95%
confidence interval with the true value. The
evaluation level was selected as the highest
level in the true data set that had more than 30
data samples. Thirty samples are enough to
have meaningful uncertainty. With less than 30
samples, the uncertainty becomes very large
and the true value has not stabilized.

Figure 1 shows an example of the roll
parameter comparisons for stern seas, 30 deg
heading. In this figure, the true value is
represented by a solid line (1.11117%). Each
extrapolation confidence interval is represented
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by a vertical line and represents a single Tier I
comparison. The extrapolation captures the true
value if the vertical line crosses the horizontal
true value line. The estimate of mean value of
crossing rate is denoted by a circle and the
most probable crossing rate is denoted by a
cross. The confidence intervals are asymmetric
relative to the mean or most probable crossing
rate. This is a property of GPD and different
than the symmetric confidence intervals more
commonly seen with the normal distribution.

The entirety of Figure 1 represents a Tier 11
comparison comprised of 100 Tier I
comparisons. The expected passing rate
percentage is the same as the confidence
interval due to use of confidence interval
overlap for the parameter comparison. Due to
the finite number of data sets, the passing rate
can vary from 90 to 100% and still be
acceptable; though the mean rate across all the
conditions should be close to the confidence
level. Table 1 shows the passing rates for all
the conditions for the two different confidence
formulations. Conditions that pass are bold;
failing conditions are italicized. Smith (2014)
indicated both CI approaches were acceptable
based on roll and pitch. The addition of lateral
and vertical acceleration shows a difference
between the two CI approaches. The logarithm
CI has many instances where the true value
capture rate is less than 90% and fail the Tier I
comparison (parameter).
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Figure 1 Confidence interval overlap of true
value for roll at 30 deg heading at 30 deg
comparison level using logarithm CI (91%)
(true value 1.111E-08)

As noted in Smith (2014), the GPD can
have zero probability which results in
asymmetric confidence intervals that have very
small lower confidence limits. This can result
in automatically capturing the true value if the
extrapolation is at all conservative; larger than
the true value.

Figure 1 shows roll comparison at 30 deg
wave heading for the logarithm boundary CI.
The estimates of the mean value are distributed
about the true value, while the most probable
values are mainly less than the true value. This
is a property of the mean value averaging over
the entire confidence interval region, whereas
the most probable value is selected at a
particular point. This difference is discussed in
Campbell et al. Figure 2 shows the pitch
comparison at the same condition where both
the mean value estimates and most probable
values are greater than the true value. This is
indicative of a conservative bias.

Estimate of Rate of Exceedance 1/s
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Figure 2 Confidence interval overlap of true
value for pitch at 30 deg at 11.5 deg using
logarithm CI (97%)

Figures 3 and 4 show the difference in
confidence interval method for pitch at 45 deg
heading at 11.5 deg comparison level. The
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boundary CI method has a higher average
upper boundary and a lower boundary always
at the lowest value considered (107°). The
logarithm CI  method produces smaller
confidence intervals.

Estimate of Rate of Exceedance 1/s
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Figure 3 Confidence interval overlap of true

value for pitch at 45 deg heading at 11.5 deg
comparison level using boundary CI (100%)

Table 1 Confidence interval overlap results

Boundary Cl Logarithm ClI
Avg GPD  Comparison # Points at Exposure Shooting
Heading Motion |Threshold Level Threshold Hours pass % MCD pass % MCD |Distance

15 roll 6.947 15 53 230000 96 119.210 84 60.867 1.159
15 pitch 7.359 12 69 230000 99 278.512 94 166.585 | 0.653
15 lat accel No data >0.2g

15 vert accel 0.125 0.2 468 230000 100 89.878 86 49.892 0.607
30 roll 12.877 30 40 100000 96 178.616 91 101.038 | 1.330
30 pitch 7.296 11.5 46 100000 99 420.751 97 244.296 | 0.576
30 lat accel 0.091 0.2 16 100000 100 1061.000 98 591.799 | 1.186
30 vert accel 0.133 0.25 13 100000 100 955.188 96 484.258 | 0.877
45 roll 17.094 60 30 230000 99 193.110 94 112.282 | 2.510
45 pitch 7.012 11.5 28 230000 100 503.342 98 269.962 | 0.640
45 lat accel 0.135 0.3 37 230000 98 237.340 94 118.744 | 1.221
45 vert accel 0.158 0.25 518 230000 99 74.673 90 41.558 0.578
60 roll 18.754 50 49 100000 100 276.284 100 169.168 | 1.666
60 pitch 6.257 9.5 71 100000 100 330.874 91 179.786 | 0.518
60 lat accel 0.157 0.35 19 100000 98 415.630 97 213.923 | 1.227
60 vert accel 0.194 0.3 169 100000 100 193.528 86 98.556 0.547
90 roll 16.055 32.5 411 230000 99 329.773 99 192.832 | 1.024
90 pitch 1.517 2.5 170 230000 100 136.716 94 68.382 0.648
90 lat accel 0.154 0.25 43 230000 94 136.448 86 74.551 0.621
90 vert accel 0.270 0.4 287 230000 100 98.103 96 52.179 0.480
135  roll 12.350 17.5 186 230000 100 92.851 92 60.694 0.417
135  pitch 4.909 7 172 230000 100 134.019 94 70.853 0.426
135  lataccel 0.137 0.25 25 230000 96 424.676 88 232.106 | 0.827
135  vertaccel 0.283 0.4 192 230000 98 150.486 96 85.572 0.416

Average Value 99 93
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Estimate of Rate of Exceedance 1/s
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Figure 4 Confidence interval overlap of true
value for pitch at 45 deg heading at 11.5 deg
comparison level using logarithm CI (98%)

Figure 5 shows asymmetric confidence
intervals for the 45 deg heading, lateral
acceleration logarithm CI at 0.3 g comparison.
At 0.2g comparison level for lateral
acceleration at 45 deg heading, Figure 6 shows
much smaller confidence intervals and a
conservative bias. Although the true value
capture rate is very low, the actual difference is
small.

Figures 7 and 8 compare the boundary and
logarithm CI methods for vertical acceleration
at 30 deg heading and 0.2g comparison level.
For comparisons at higher levels, both methods
have 100% capture rate. The boundary method
has larger confidence intervals; both a higher
upper bound and many more instances of near
zero lower bound. The boundary CI higher
upper bound is indicated by the higher MCD;
99.5 vice 54.2. These are similar to the trends
seen for pitch in Figures 3 and 4.

Pipiras, et al (2015) compares the
boundary  and  logarithm  (lognormal)
confidence interval approaches with a

preference for lognormal as anti-conservative.
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Figure 5 Confidence interval overlap of true
value for lateral acceleration at 45 deg heading
at 0.3g comparison level using logarithm CI

Estimate of Rate of Exceedance 1/s
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Figure 6 Confidence interval overlap of true
value for lateral acceleration at 45 deg heading
at 0.2g comparison level using logarithm CI

In terms of acceptance criteria, the
boundary CI approach had all the parameter
comparisons pass. Therefore, all the Tier II
conditions pass and overall acceptance, Tier III,
automatically passes if all condition
comparisons, Tier II, are acceptable. In this
case, even the alternate Tier II definition
requiring all the motions to pass for a condition
to pass results in overall acceptance.
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Estimate of Rate of Exceedance 1/s
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Figure 7 Confidence interval overlap of true
value for vertical acceleration at 30 deg
heading at 0.2g comparison level using
boundary CI
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Figure 8 Confidence interval overlap of true
value for vertical acceleration at 30 deg
heading at 0.2g comparison level using
logarithm CI

It is perhaps more instructive to look at the
logarithm CI results. Here some of the
acceleration parameter comparisons are not
acceptable; true value capture rates less than
90%. As a result, some conditions do not pass
but the condition pass rate is acceptable for
overall acceptance, 18/23 (78%). However, a
condition criterion requiring the passing of all
motion comparisons is failed for two-thirds the
conditions defined by unique speed-heading-
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seaway combination. There are six such
conditions in this example. Overall acceptance
fails as well.

However, this does show there is a heading
range that is acceptable; aft of beam seas.
There could be a limited acceptance with the
restricted range of headings. This may also
highlight a difference in performance due to
behavior of the distribution tail, that is, heavy
or light.

As an alternative, the mean conservative
distance is a metric which uses the upper
confidence limit on an extrapolated sample
value.  This metric estimates how much
conservatism (or over-prediction) is present in
the simulation results. For validation of a
simulation tool against model data for ship
guidance, this quantity may be more important
than overall total confidence interval. The
difficulty is agreeing to what is an acceptable
value. In this example, only one case was over
3 orders of magnitude and almost all were over
2 orders of magnitude. At first glance, this
appears to be completely unacceptable as a 100%
difference is usually considered unacceptable.
However, for exceedance rates of extreme
values the uncertainty is inherently high and 1
in a billion is essentially the same as 10 in a
billion. The acceptable MCD can be
determined by the level at which the over
conservatism  produces an  undesired
operational restriction or life time risk level.

The MCD is calculated from the upper
confidence limit; the upper confident limit
suggests that 95% of the time, the true value is
smaller than the limit value. Re-analysis of the
existing data would show how successfully
both methodologies estimate this quantity.
Because this investigation would be focused on
only the upper interval limit, the overall
methodology validation conclusions may differ
from those related to formulation of the entire
confidence interval.



Y

Proceedings of the 12™ International Conference on the Stability of
Ships and Ocean Vehicles, 14-19 June 2015, Glasgow, UK.

This example demonstrates the many
factors influencing the comparison: CI method,
comparison level, and comparison metric.

6. CONCLUSIONS

This paper demonstrated the applicability of
a multi-tier validation approach to the
validation of an extrapolated value confidence
interval calculation method based on the
Generalized Pareto Distribution. The first tier,
parameter comparison, was made by
comparing the 95% confidence interval from a
GPD extrapolation to the true value. This was
done 50 to 100 times to determine a passing
rate for the Tier II, condition, comparison.
Lastly, most of the conditions passed the
second tier criterion, which passes the Tier III,
or set, comparison. The extrapolation method
would be considered validated. A rigorous
validation effort would specify passing
percentages at Tiers I and II.

Discussion was extended from parameter
comparisons of a confidence interval
calculation methodology against a known
population to comparisons of extrapolated data
between simulation and model data. The
confidence interval overlap validation approach
for these Tier I comparisons requires a
validated confidence interval formulation.
Other comparison metrics such as maximum
conservative  distance, mean difference,
hypothesis testing, and percentiles were
discussed as alternatives to confidence interval
overlap. The boundary CI method proved
marginally better than the logarithm CI method
due to more acceptable conditions and mean
value closer to confidence level. Still the
boundary CI has many instances of 100 percent
capture. This could be indicative of an overly
large CI. The logarithm CI method had many
failing conditions. Both approaches showed a
conservative  bias. Extrapolation  of
acceleration peaks tended to have lower
capture rates than for roll or pitch for both CI
methods. In terms of the acceptance criteria,
the boundary CI method passed when
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accelerations are included and the logarithm CI
method did not. It was shown that the
acceptance criteria can indicate the presence of
different behavior of distribution tail based on
which parameters/motions pass.

The ratio of the GPD threshold and the
evaluation level provides a metric for practical
use. This ratio was less for accelerations than
motions. The conditions with low motions can
either have more data added, in the hope of
increasing the GPD threshold level, or ignoring
the condition as having negligible motions.
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APPENDIX A: DISCUSSION OF
HYPOTHESIS TESTING ERROR

Hypothesis testing involves the formulation
of a null hypothesis and has two errors that
need to be controlled. The Type I error is
associated with rejecting a null hypothesis that
should be accepted - false negative. It is
characterized with probability a (also known as
the level of significance). On the probability
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density function (PDF), this is the area in the
tails of the distribution. The confidence interval
is the area between the tails, 1-o (probability
that null hypothesis is accepted correctly).

Type II error is the error associated with
accepting a null hypothesis that should be
rejected - false positive. It is characterized with
probability . Indeed, 1- B is the probability
that the null hypothesis is rejected correctly.
Type 1II error is calculated based on the
difference in means between the data sets
relative to an allowable or desired difference.
The Type II error is overlap area of the original
PDF and a PDF shifted by the difference in
means.

If the mean shift is large, then it is
relatively easy to detect false positives as the
means being compared are far apart and B is
small. Conversely, if the mean shift is small,
then it is difficult to detect false positives and
they are more likely to occur. For this case, f3
would be larger and even greater than 50%. A
normal distribution is often used to describe the
data probability density function for the Type II
comparison.

This example deals with motion data sets
with equal number of records and the
comparison metric is the standard deviation.
The null hypothesis is that the two variances
are assumed to come from the same data set or
the wvariances are statistically the same.
Probability of Type II error is arbitrarily
desired to be less than 50% using 90%
confidence probability.

It is possible to check if B < 0.5 without
actually calculating by taking advantage of
the fact that once normalized, the mean
difference must be greater than 1.645 (90%
quintile of a normal distribution with zero
mean and unity variance) based on the shift to
achieve less than 50% probability with 90%
confidence and two-tailed Normal distribution.
This critical difference, 0., is applicable to all
comparisons using the same confidence and f3.
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Using other values of B results in different
mean critical differences.

As the comparison metric is related to
standard deviation, the starting point is
normalizing the allowable mean difference D,
between the variance estimates of the two data
samples:

— DA

D is the difference between variance
estimates of the two samples and Var(D) is the
variance of this difference.

8 (A1)

A

D=V,-7, (A2)
The samples are independent, thus:
VarD)=Var(V)+VarV,)  (A3)

Each sample consists of a number of
records obtained from simulation or model
experiment. Variance estimates of each sample
are the result of averaging the variance
estimates of each record. Thus, variance of the
variance estimate is expressed as:

N Var(V .
var(7) ="0) ) -

1 2

Var(V,,)
v (A4)

Var(VA;n) and Var(VA;n) are the variances of
the variance of a single record.

The validity of the code is the hypothesis
being tested. Thus, the code is expected to
recover the theoretical variance reflected in a
model test. It also means that the variance of
the variance estimate of a single record is the
same between the code and model test:

Var(Vy) =VanVy,) =Var(Vy) (A5

Thus, the theoretical value of the variance
of the differences is
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Var(l}m) N Var(I}Rz)

Var(D) =
(D) N N, .
A~ 1 1
=Var(V, )(— + —j
Nl N2

The problem is that the theoretical value
Varn(Vy) is not known. Instead, the estimates
Var(V,,) and Var(VRz) can be computed using
an option for a large number of records, see
Belenky, et al. (2013, 2015). The best estimate
of Van(V,) can be obtained by pooling
together the two available estimates:

Var(V,)

(N, - WWarW) +(N, —1War(V,,) (A7)
N, +N,-2

Finally:

Var(D) =

_ (N —1ar (V) + (N, = 1War(V,,)

N,+N,-2
1 1
X| —+—
Nl N2

Setting J., to 1.645 and substituting (A8) into
equation (A1)

1.645\Var(D) < D, (A9)

For the case when number of records in each
sample is the same: N;=N,=N:

(A8)

Var(Vy)+Var(Vy,)
N

Var(D) = (A10)

Equal number of records allows producing
a simple final formula to assess Type II error:

1.645\/ V“’”(VRI);V“”(VM) <D, (A11)
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