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ABSTRACT 

 

The paper introduces a method to determine a wave equation 

from a measured wave system. The method is applied to wave 

measurements recorded in a seakeeping experiment. The obtained 

wave equations accurately repeat the wave gauge signals. The wave 

equation provides a link between a numerical and physical model 

test. This is verified for heave and pitch motions of the ship model 

in regular and irregular waves. Time domain simulation with the 

wave equation and initial conditions from the model test, gives 

motion time series in good agreement with the measurements. 
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INTRODUCTION 

 

Today, the linear seakeeping theory is well established for analysis of 

the linear dynamic responses of conventional ships in waves, such as 

wave-induced heave, pitch, sway and yaw motions and global wave 

loads. Numerical models for ship motions in waves, based on the linear 

strip approach, are frequently used design tools offering an alternative 

to model tests. However, the linear seakeeping theory is inadequate for 

analysing transient problems like slamming impact or dynamic 

instability –non-linear problems often associated with new ship 

concepts, high-speed ships or ships of unconventional hull shape.  

The irregular character of ocean waves, and consequently of the ship 

responses, makes it practically impossible to determine the probabilistic 

characteristics of the non-linear dynamic problems from model 

measurements alone. The impressive test programme by Kan et al. 

(1993) illustrates this well. They did 1643 runs with two models in 

regular quartering waves to analyse capsizing mechanisms. Despite the 

large number of tests, however, risk assessment in irregular waves was 

left undone.  

Model measurement together with mathematical modelling is a 

generally accepted approach to studying transient or time-dependent 

dynamics of ships in waves. Typically in time-consuming risk 

assessment, model experiments are often used to verify a mathematical 

model, which in turn will be used to calculate the risk probability. 

However, comparing calculations and model measurements is not an 

easy task. In Salvesen et al. (1974), the linear strip theory is verified by 

comparison with model measurements, although some cases show large 

discrepancies between the theoretical calculations and the 

measurements. Such discrepancy could in general be due to the 

experimental accuracy, the theoretical model, or both. Another possible 

reason is the difficulty of connecting measured wave elevation and 

measured response. It is impossible to measure the incident wave 

system at the exact position of the hull and it is not obvious from a 

wave height measurement elsewhere what the waves exciting the 

responses looked like. In a regular wave there is a phase shift between a 

wave measurement at a point following the model and a point on the 

hull. In irregular waves the wave profile at the hull and at a 

measurement point will never look the same. In the frequency-domain 

this is of minor importance; in the time-domain, on the other hand, the  

wave-hull intersection is essential for the analysis. To enable 

comparison between measurements and time-domain simulation, the 

numerical model must expose the numerical ship to the same waves as 

the model in the test basin was exposed to. 

This paper introduces a method to determine a wave equation, from 

measurements of a wave system, describing wave elevation and wave 

kinematics. The method is applied to wave measurements recorded in 

the seakeeping experiments on a ro-ro vessel, (Garme, 1997). The 

obtained wave equations accurately repeat the wave gauge signals. The 

wave equation as a link between a numerical and physical model is 

verified by comparing measured and simulated heave and pitch motions 

of the ro-ro model in regular and irregular waves. The time simulations 

were performed by the SMS code, (Hua & Palmquist, 1995), with the 

wave equation and initial conditions from the model test. The calculated 

time series were in good agreement with the measurements. Finally, 

modification and application of the method are discussed. 

 

 

WAVE EQUATION DETERMINATION 

 

Gravity waves of limited amplitude and slope are readily expressed 

by a Stokes expansion. In the following, the first-order wave component 

will be determined. From this solution the higher-order Stokes 

components can be calculated and added to the solution. According to 

the theoretical study by Nestegård & Stokka (1995), the second-order 

component is the predominant non-linear wave component. The 
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obvious refinement to the wave equation if the analysed wave system 

has a non-linear character is to add the second-order Stokes wave 

component. If the Stokes expansion is valid in the seakeeping analysis 

the wave height measurement from one wave height meter would be 

sufficient to give the wave elevation everywhere in the basin at every 

moment of the test. 

In the first order wave equation, long crested waves are described by: 
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Each sample of a measured wave-height time series, gives a ζ-value 

corresponding to a certain time instant, t, and position coordinates x and 

y. The wave height meter follows the model’s plane motion and 

consequently, x and y are functions of time. If frequencies, ωn, and 

wave numbers, kn, are known, an equation for each sample leads to an 

over-determined system of equations. The coefficients an and bn are 

then easily computed by a least squares method. For a time series of N 

samples described by n cosine and n sine functions the problem is 

formulated as: 
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is an N x 1 vector of measurement values, 
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is an N x 2n matrix of the trigonometric functions and 
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is a 2n x 1 vector of the unknown coefficients. Multiplying equation (2), 

from the left, by the transpose of matrix A, turns the over-determined 

system of equations into the corresponding least squares problem, 
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The method to solve the system (3) depends on its condition. If the 

system is well conditioned, Gaussian elimination is applicable; 

otherwise, a more sophisticated method is needed. In the next section 

where the method is applied, the system was sufficiently solved by 

Gaussian elimination.  

The frequencies and wave numbers might be determined from an 

analysis of a wave height meter fixed in the basin, the wave generator 

motion or simply from the known input parameters to the wave 

generator. 

 

 

COMPARISON OF CALCULATED AND MEASURED WAVES 

 

The method of wave equation determination was developed in 

connection with the seakeeping model test series, (Garme, 1997), where 

the objective was to perform motion measurements tailored for 

comparison to calculations in the time-domain. The waves in the wave 

basin were measured by means of two wave height meters, both 

following the model at a distance where slight influence from model-

created waves was expected. Tests were performed in regular, irregular, 

and crossing waves. Crossing refers to wave systems propagating 

towards each other, intersecting at right angles. Each irregular wave 

was represented by three regular wave components with frequencies 

chosen in the vicinity of model heave, roll and pitch natural frequencies. 

The three-component wave is justified by its simplicity. The sea 

environment is irregular and still assumed possible to express 

analytically from a single wave-height measurement. With the waves in 

an analytical form a numerical ship could be exposed to the same waves 

as the model during the test and the calculated and measured time-series 

could be compared. 

Wave equations were calculated for all wave systems with results in 

close agreement with measurements. Long crested waves are described 

by equation (1) and crossing waves by equation (4). 
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Wave equations were determined with data from one wave height 

meter at a time. The equations could accurately recreate not only the 

measured signal they were based upon, but also, generally, the 

measurements from the other wave height meter, see Fig. 2, 4, 5 and 6. 

In a few cases the wave equation based on information from one of the 

measurement points did not sufficiently repeat the measurement 

recorded at the other, see Fig. 3. Model generated waves are believed to 

be the explanation, despite the ambition to put the wave height meters 

where they were not influenced by the model. No attempt has been 

made to prove this but the explanation is supported by considering test 

no.30 and no.32 of Garme (1997), which are tests in regular head seas 

with wave height meters principally located as in Fig. 1. 
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Fig. 1  Principal position of wave height meters. 

 

 

In test no. 30 the model was heading at a speed of 1.4 m/s. The waves 

were close to harmonic, characterised by a frequency of 4.4 rad/s and an 

amplitude of 0.03 m. A wave equation based on the fore wave height 

meter accurately repeated both wave height recordings, see Fig. 2. In 

test 32 the model speed was less, 0.96 m/s, wave frequency 3.25 rad/s 

and amplitude 0.087 m. From Fig. 3 it is seen that a wave equation 

based on the fore gauge underestimates the aft signal. The differences in 

model speed, wave frequency and amplitude explain why the aft wave 

height meter was influenced by the model-created waves in test 32 but 

not in test 30. In test 32 the frequency of encounter is in the vicinity of 

pitch and heave natural frequencies and close to twice the natural 

frequency of roll motion. This in combination with larger wave 

amplitude results in major motion responses (see Table 1), and 

consequently the wave generation becomes much greater in test 32 than 

in test 30. The lower speed in test 32 also allows the radiated waves 

time to reach the aft wave height gauge. 
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Fig. 2 Test no. 30. Regular long-crested waves measured by two 

wave height meters following the model in head seas. The 

wave equation coefficients are determined from the 

measurement in the upper graph. 
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Fig. 3 Test no. 32. Regular long-crested waves measured by two 

wave height meters following the model in head seas. The 

wave equation coefficients are determined from the 

measurement in the upper graph. 

 

 

Table 1 Response amplitudes calculated as 2 times the standard 

deviation of the measurement. 

Test no. #30 #32 

Model speed [m/s] 1.4 0.9 

Heave amplitude [m] 0.006 0.057 

Pitch amplitude [deg] 0.361 5.1 

Roll amplitude [deg] 0.161 3.7 

 

 

Fig. 4 and 5 show examples of measured and corresponding 

calculated long-crested three-component irregular waves and Fig. 6 on 

crossing three-component waves. Each figure contains two graphs, one 

for each measurement point. The wave equation is based on the fore 

wave height meter.  
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Fig. 4 Test no. 66. Irregular, three-component, waves measured by 

two wave height meters following the model in head seas. The 

wave equation coefficients are determined from the 

measurement in the upper graph. 

 

 

wave height 

meter no. 2 

wave height 

meter no.1 

wave propagation 

direction 



632 

 

0 5 10 15 20 25
-0.1

0

0.1

[s]

[m
]

0 5 10 15 20 25
-0.1

0

0.1

[s]

[m
]

 

Fig. 5 Test no. 74. Irregular three-component waves measured by 

two wave height meters following the model in athwartships 

seas. The wave equation coefficients are determined from the 

measurement in the upper graph. 
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Fig. 6 Test no. 113. Crossing waves, consisting of two irregular 

three-component wave systems. Wave measurements were 

made by two wave-height meters following the model. The 

wave equation coefficients are determined from the 

measurement in the upper graph. 

 

 

In the examples, each wave component in the wave equation is 

represented by three frequencies: the frequency the wave-maker was 

programmed to generate, one frequency slightly above this value, and 

one just below. The purpose of the latter two was to catch inexactness 

in the wave generation. Having chosen the frequencies, the component 

wave number was determined from the potential solution of linear 

gravity waves at finite depth, equation (5): 
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where h is the basin water depth, ω the wave frequency and g the 

constant acceleration of gravity.  

Choosing the wave frequencies in this way, based on the wave 

generator input, is of course far from optimal. A better way would be to 

develop a routine, which on the basis of approximate frequencies (for 

instance the wave generator input), could determine frequencies and 

eventually the coefficients that give the best fit to measurement. In this 

context it should be mentioned that the length of a measured time series 

should also be considered when calculating the wave equation. The 

wave system generated by a wave maker is more or less time 

dependent. Recordings over a long period of time might therefore be 

less well reproduced by a sum of sine and cosine functions. On the 

other hand, for a complicated wave system, a sufficiently long time 

series is necessary to catch the wave pattern.  

Wave systems with strongly dispersive or dissipative behaviour 

demand time-dependent wave equation coefficients. A possible way to 

treat such waves would be to cut the measurement into sequences and 

determine an equation with constant coefficients for each sequence. It 

might also be necessary to include the second-order terms as mentioned 

in the beginning of the previous section. 

A wave equation can be determined from one wave height 

measurement alone. But, since a gravity wave will lose in amplitude 

and not be absolutely stable in frequency during its propagation it is 

important to do the wave height recording in the vicinity of the model, 

and thereby avoid measuring a slightly different wave system than that 

which the model experiences. 

The method presented here, to construct a wave equation from a 

single wave height recording is also believed to work for more 

complicated wave systems; however, to gain accurate results a routine 

for choosing the component frequencies would be necessary together 

with a method for solving large over-determined systems. 

 

 

COMPARISON OF CALCULATED AND MEASURED SHIP 

MOTIONS 

 

To demonstrate the usefulness of the determined wave equation, the 

SMS-code (Hua & Palmquist, 1995), is used for time-domain 

simulation of the ship motions in heading waves, with the wave 

equations and the initial motion conditions from the model 

measurement (Garme, 1997). The results are in good agreement with 

the corresponding measured motion. 

The model test of an 11300 tonne ro-ro ship, carried out at SSPA 

Maritime Dynamic Laboratory (MDL) presented in detail by Garme 

(1997), serves with time series of wave and ship motion measurements. 

The model test series, aimed primarily at verifying different 

mathematical models of ship motion, touches on a number of issues on 

ship dynamics, such as loss of stability in quartering waves, roll motion 

in heading waves and linear and non-linear motions. 

The code SMS is based on the non-linear strip approach. In the actual 

simulations, surge and yaw motion was denied, which is equivalent to a 

physical model test with constant forward speed and straight motion 

path. The Froude-Krylov forces are calculated over the momentary 

wetted hull surface. The linear potential theory is applied for the 

calculation of the radiation and diffraction forces. Consequently these 

forces are calculated on the mean wetted hull surface with the 

assumption that the relative motion of the hull surface to the wave 

surface is small. 

First, the heave and pitch motion of the ro-ro ship in a heading near-

regular wave is simulated with the wave equation from the model 

measurement. The wave amplitude is about 2.89 m and wave frequency 

0.558 rad/s (Test No. 32 in Garme (1997)). The ship speed is 8.51 

knots.  
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Fig. 7a Time history of heave motion in regular waves (test 32) and 

the corresponding computer simulated signal. 
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Fig. 7bTime history of pitch motion in regular waves (test 32) and the 

corresponding computer simulated signal. 

 

 

Fig. 7 shows the simulated and model-measured heave and pitch 

motions as functions of time. Generally, the simulated amplitudes of the 

heave and pitch motion are lower than the measured. The phase 

relationships of the simulated motions are in very good agreement with 

the model measurement. It should be pointed out that the model 

measurement was carried out with a self-propelled model while the 

computer simulation corresponds to a towed model. Nevertheless, the 

comparison provides good insight into the reliability of the 

mathematical model, and the possibilities of modifying it. 

An irregular wave is represented by three regular waves in the model 

measurement. The primary purpose is to validate the superposition 

theory, which is the basis of linear seakeeping theory. Fig. 8 shows the 

simulated time history of heave and pitch motions in such an irregular, 

heading wave in comparison with the model measured. The ship speed 

is 14.84 knots in full-scale (Test No. 66 in Garme (1997)). The results 

confirm the potential of the wave equation as a tool in seakeeping 

analysis. The deviation from simulated and recorded time series 

originates from measurement errors, approximations in the numerical 

code, discrepancies between the ship model and the digitalised hull and 

from discrepancies between the wave equation and the waves in the 

model test. 
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Fig. 8a Time history of heave motion in irregular waves from test 66 

and the corresponding computer simulated signal. 
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Fig. 8b Time history of pitch motion in an irregular wave from test 66 

and the corresponding computer simulated signal. 

 

 

APPLICATIONS 

 

Considering the wave-induced motions as primary response, 

secondary responses would be, for instance, added resistance, global 

wave loads, relative motion and relative velocity which are due to the 

combined effects of the surrounding water wave motion and the 

primary responses. Some dynamic instability problems, such as 

parametrically excited roll motion and broaching can also be 

categorised as secondary response. 

As is known, it is impossible to exactly describe seakeeping problems 

by means of mathematical models due to the complexity of the 

hydrodynamic mechanisms. In practice, it is always preferable to have a 

model for analysis which is as simple as possible, while still being 

physically relevant. The simplified model has to be verified either by 

model or full-scale measurements before application. For the primary 

responses, satisfactory mathematical models and numerical methods 

exist for conventional ships and for some types of high-speed vessels. 

However, quantitative verifications are in general not sufficient as far as 

the secondary responses are concerned. This is due to the practical 

difficulties in accurately measuring and analysing the relevant 

responses. 

Consider for instance slamming pressure, an important design 

parameter in hull structural design. High local pressure develops as a 

ship bow leaves the wave surface and re-enters with great relative 

velocity. The magnitude of the slamming pressure is not only 

proportional to the square of the relative velocity, but is also sensitive to 

the hull geometry and wave surface slope. There are many different 
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models for predicting slamming pressure. However, uncertainty arises 

when applying a method in practical design, since it is incompletely 

verified. The wave equation approach described in this paper, is a key 

to connecting a numerical simulation model to model measurements. In 

the slamming case, the wave equation could give the water particle 

velocity and the wave shape at the moment of impact, useful as input to 

a numerical model or for comparison with a simulated event. Then the 

discrepancy between measurements and calculations could be studied as 

a geometrical effect on slamming pressure. 

During the past years, a large number of theoretical studies have been 

carried out on ship dynamic stability problems, see Proceedings 

STAB´94 (1994) and Proceedings STAB´97 (1997). Nevertheless, 

comparative studies with model and full-scale measurements are rare, 

resulting in lack of reliably verified theoretical models. Here again it is 

believed that the wave equation approach enables quantitative 

comparison between calculations and measurements. Actually, some 

dynamic stability problems are very sensitive to the wave motion 

around the hull, for instance, roll motion of ro-ro ships in following or 

quartering waves. The problem is mainly governed by time-varying 

quasi-hydrostatic moments in terms of wave excitation and restoring 

moment. These two moment components are easily calculated in a 

quasi-hydrostatic manner. So with a time sequence of roll motion from 

model measurement and the corresponding wave motion obtained by 

the wave equation, the relationship between roll and wave motion can 

be determined through the calculated quasi-hydrostatic roll moments 

based on the wave equation. 

Another possible application is to study model-generated waves, by 

comparing wave equations based on measurements of the undisturbed 

incident waves with measurements where model-generated waves have 

perturbed the wave pattern. This could be interesting in the analysis of 

stability loss in following and quartering waves, in which model-

generated waves can be so large relative to the incident waves that we 

can no longer ignore their influence on the stability. 

 

 

SUMMARY AND CONCLUSIONS 

 

This paper proposes a method to transfer wave elevation 

measurement to an analytical time-domain expression describing the 

model test wave environment. This gives the necessary information to 

study time-dependent interaction between the hull and the incident 

waves. The method is a tool to facilitate comparison of numerically 

simulated time series of ship dynamic behaviour in waves with model 

measurements. It is also believed that model generated waves (radiation 

and diffraction waves) could be studied within the scope of this method. 

The method and its application as a link between model tests and 

numerical simulations, has been verified through seakeeping tests on a 

1:35 scale ro-ro vessel (Garme, 1997). The measurement-based wave 

equation could accurately recreate the wave elevation measured at an 

independent measurement point. The wave equation was used as a time-

domain wave model in the code SMS, (Hua & Palmquist 1995), to 

simulate the ship motion response. The calculated and measured time 

series of the heave and pitch motion were in good agreement.  

The sea conditions in the model test were regular, irregular and 

crossing waves. The irregular and crossing wave systems were 

composed of three regular wave components. The wave equation 

method is believed to work on more complicated wave systems 

although the simple least squares determination of its coefficients has to 

be improved. 
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