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ABSTRACT  

In this paper, a coupled roll-sway-heave model derived by Chen et al (1999) is studied. In order to 

address the small damping constraint, the extended Melnikov’s method for slowly varying system is 

used by assuming the damping term is large. Using the extended Melnikov’s method, the critical 

wave amplitudes are calculated. A phase space transport method has been applied. The ratios of 

erosion safe basin areas have been calculated based on the Melnikov’s method and were compared 

with the results from numerical simulations.  
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INTRODUCTION 

Six degree of freedom (DOF) vessel motion 

problems exhibit numerous complexities, 

particularly when studied analytically. Most 

previous work on multi-DOF vessel motions 

either reduced the problems to lower (one or 

two) DOF problems or used numerical 

simulations. In the work of ship motion 

analysis, compared to 1DOF problems, 

relatively little work have been done using 

analytical methods for multi-DOF ship motion 

problems.  

In this paper, the extended Melnikov’s method 

(Salam, 1987) is applied to a roll-sway-heave 

coupled ship model derived by Chen et al. 

(1999). By changing the coordinates and 

applying the singular perturbation technique, 

Chen showed the model can be simplified to a 

slowly varying system with three variables, 

which contain roll displacement and roll 

velocity as the fast varying variables and a 

slowly varying variable. This kind of system 

can be manageable using the Melnikov's 

method discussed by Wiggins and Holmes 

(1987, 1988). But similar to the planar 

Melnikov’s method, the constraint of this 

method is the small perturbation assumption. In 

order to address this constraint, the extended 

Melnikov’s method for slowly varying systems 

is applied. The extended Melnikov’s method 

developed in the literature by Salam (1987) has 

been recently applied to ship motions problems 

such as capsize (Wu and McCue, 2007, 2008, 

Wu, 2009) and surf-riding (Wu et al. 2010 and 

Wu 2009). The purpose of this work is to show 

the possibility of applying the extended 

Melnikov’s method to multi-DOF ship models. 

MATHEMATICAL MODEL 

The equations of motion for the coupled roll-

sway-heave model in the earth-fixed coordinate 

system can be expressed in Eq.(1) 
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in which, m is the mass of the ship, ,c cy z and

are sway displacement, heave displacement and 
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roll displacement, respectively. ,Y Z and K  are 

generalized forces. The prime denotes the 

derivative with respect to time t . Chen et al. 

(1999) transformed the model to a wave-fixed 

coordinate, in which the ship is viewed as a 

particle riding on the surface of the wave. The 

sway motion is now parallel to the local wave 

surface and the heave motion is perpendicular 

to the local wave surface. The equations of 

motion now can be expressed as in Eq.(2).  
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where 1x  , 2 'x  , 1 0 /z z h in which h is 

the draft of the ship.  y  is a transformed 

coordinate which contains sway velocity and 

other variables. 0z  is small compared to h . (.)


 

is the derivative relative to  , where rt  . 

r  is the natural frequency of roll.  

In Eq.(2), the heave motion is considered to 

exhibit fast dynamics compared to roll and y . 

Chen et al. (1999) used the singular 

perturbation theory to this system to show that 

1z  and 2z  can be solved from the steady state 

equation and can be substituted into the slow 

dynamics. The dynamics of the whole system 

Eq.(2) can be represented by the reduced 

system Eq.(3). 
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Chen et al. found that for the reduced system in 

Eq.(3), roll motions are the fast varying 

variables while y  is the slowly varying 

variable. Systems like this are called slowly 

varying systems. When 0  , this is simply 

the planar roll motion with zero forcing and 

zero damping. When  is a small positive 

number, the y motion (which includes sway 

and other motions) becomes relevant. Because 

the sway motion is stable, the system will trend 

towards the invariant manifold of roll 

dynamics.  

THEORETICAL BACKGROUND  

Melnikov’s Method for Slowly Varying Systems 

Melnikov’s method is one of few analytical 

methods that can be used to predict the 

occurrence of chaotic motions in nonlinear 

dynamic systems. Melnikov’s method has been 

applied to a number of ship dynamics 

problems, such as capsize in beam seas 

(Falzarano, 1990) and surf-riding in following 

seas (Spyrou, 2006). Most of these are treated 

as single DOF problems. Melnikov’s method 

for multi-DOF problems has been introduced in 

several references including the works of 

Wiggins and Holmes (1987, 1988), who 

derived the Melnikov’s function for slowly 

varying system in Eq.(3).  

When 0  , the unperturbed system in Eq.(3) 

has a planar Hamiltonian, which contains a 

homoclinic (or heteroclinic) orbit. The 

Melnikov’s function for this system is 
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[0, , ]a bg g g


 . H is the Hamiltonian for the 

unperturbed system. 0 1 2( ) ( , )q t x x is the 

coordinates of the homoclinic orbit for the 

unperturbed system.  And   is the dot product.  

Melnikov’s Method for Slowly Varying Systems 

with Large Damping 

When the damping term is assumed to be large, 

it is grouped in the unperturbed system. 
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Therefore, the unperturbed system is no longer 

Hamiltonian due to the presence of 2x in 
1f . 
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The homoclinic orbit, which is essential in the 

formation of Melnikov’s function, disappears 

as well. Since the homoclinic orbit does not 

arise naturally, it has to be created artificially. 

Eq.(3) is then written in the form of Eq.(6). 
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The Melnikov’s function for this system is  
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in which, 0 1 2( ) ( , )q t x x is the coordinates of 

the new homoclinic orbit of Eq.(5). ( )a s is the 

trace of the Jacobian matrix of Eq.(5). If the 

unperturbed system in Eq.(5) is Hamiltonian, 

( ) 0a s  . Eq.(7) can be reduced to the same 

form as Eq.(4).  

Phase Space Transport 

As mentioned earlier, the unperturbed system 

of Eq.(3) has a planar homoclinic orbit, which 

contains a stable manifold and a unstable 

manifold. Wiggins and Holmes (1987) pointed 

out that when  is small enough, the perturbed 

system is  -close to the local unperturbed 

manifolds in a small neighborhood. Outside of 

this region, the perturbed manifold is  -close 

to the unperturbed manifold in finite time. The 

theory of phase space transport for planar 

systems is applied here to predict the safe 

region erosion in finite time. 

For the unperturbed system, the inside of the 

homoclinic orbit is the safe region. When the 

homoclinic orbit is perturbed, the manifolds 

will intersect resulting in lobes. And some 

initial conditions initially inside the safe region 

may be outside the safe region for the 

perturbed system (pseudoseparatrix) after some 

time. This phenomenon corresponds to a 

special lobe called turnstile lobe (Wiggins, 

1992). The area of this lobe is given in Eq.(8) 

(Wiggins, 1992). 

2
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L M t dt     O  (8) 

in which 0 0( , )M t  is the positive part of the  

Melnikov’s function, 0L represents the lobe, 0t

is the parameter in the homoclinic orbit 0 0( )q t  

denoting different time in the Poincaré map. 0

is the phase difference with the external 

forcing. T is the period of the external forcing.  

Phase space transport refers to the initial 

conditions transporting outside the safe region 

after several periods of external forcing. The 

amount of the transported phase space can be 

used to show the rate of safe area erosion. Chen 

and Shaw (1997) derived the estimate of 

erosion ratio as shown in Eq.(9). 
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where sA is the area of the unperturbed safe 

region, e is the ratio erosion area divided by 

the original safe region, and because  is a 

small positive number, 
2( )O term can be 

ignored. In this work, Eq.(9) is used to show 

the erosion of safe basin for the capsize 

problem. 

APPLICATIONS 

The data from twice capsized fishing boat 

Patti-B are used here for numerical 

investigation. Chen et al. (1999) proposed this 

model shown in Eq.(10). 
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1f is the restoring moment in the roll motion, 

which includes the effect of bias. 

44 2 44 2 2qx x x   is the nonlinear roll 

damping.  is the non-dimensional wave 

frequency. Other coefficients come from 

hydrodynamic forces, wind forces and wave 

forces.  

Melnikov’s Function   

The extended Melnikov’s method is applied 

here by assuming the roll damping terms are 

large. For the slowly varying system, it is 

essential to have a homoclinic orbit in order to 

calculate the Melnikov’s function (Wiggins, 

1987). If the linear damping term is assumed to 

be large, the center in the unperturbed system 

will become a sink, which makes it impossible 

to have a homoclinic orbit. In this work, the 

following damping term is assumed for roll 
2 3

2 44 2 2 2( )B x x bx cx    (11) 

where b and c are coefficients.  

Although it is physically unrealistic to have 

quadratic damping term in roll, it is used here 

to show the possibility of using the extended 

Melnikov’s method to multi-DOF problems.  

In order to form the homoclinic orbit for the 

unperturbed system, the quadratic damping 

term is assumed to be large. The unperturbed 

system is now 
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where 21
1

22

cosy x



 is the sway variable 

obtained from averaging. 1x is the coordinate of 

the saddle point, which can be calculated by 

setting 1 0x


 and 2 0x


 . Eq(12) contains a 

homoclinic orbit starting from a saddle 

connecting to itself, as shown in Figure 1. The 

solid line in the figure is the homoclinic orbit 

for Eq.(12), while the dashed line is the 

homoclinic orbit for the unperturbed system in 

Eq.(3) without the quadratic damping term. 

These two homoclinic orbits start from the 

same saddle point, and are close to each other. 

The Melnikov’s function can be calculated 

using Eq.(7). Numerical integration can be 

carried out without difficulty.  

 

Fig. 1: Homoclinic orbit for the unperturbed system 

Numerical Results 

Chen et al. (1999) have found the 

hydrodynamic and hydrostatic coefficients in 

Eq.(10) for Patti-B at wave frequency 

0.6 /w rad s  . In this work, the simulation is 

carried out for the case when the center of 

gravity has slight bias 0.025Gy  . The wind 

forces are assumed to be zero. The quadratic 

damping coefficient is set to 0.1b  . 

Melnikov’s functions for both the standard and 

extended methods can be calculated using Eqs 

(4) and (7), respectively. When 0( ) 0M t  , this 

corresponds to the critical wave amplitude a

beyond which the chaotic motion and capsize 

may occur. The critical wave amplitude a has 

been calculated for both Melnikov’s methods 

listed in Table 1. 

As shown in the table, the extended Melnikov’s 

method predicted the critical wave amplitude 

slightly higher than the standard Melnikov’s 

method for the case studied here. 
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Table 1: Critical wave amplitude for two Melnikov’s 

methods 

Method  a (m) 

Standard Melnikov 0.1792 

Extended Melnikov 0.1826 

 

Numerical simulations are carried out to obtain 

safe basins of the 3DOF system with the 

damping terms shown Eq.(11) and with 

original damping term. The safe basins are 

calculated by integrating a grid of 100 100

points in roll plane with 1,y z and 2z initial 

conditions equal to 1. Every initial condition is 

integrated until a roll angle is greater than the 

angle of vanishing stability ( 0.5063rad ), thus 

capsize occurs or through 10 cycles of external 

forcing, thus deemed safe. Capsize was 

checked every 0.01dt s . Figure 2(a) is the 

system with quadratic damping and Figure 2(b) 

is the original system. In both cases, the wave 

amplitude 0a  .  

 
(a) 

 

(b) 

Fig. 2: Safe basins for different models (The white areas are the 

safe basins, and the dark areas are capsize area.) (a). Safe basin 

for system with quadratic damping included. (b). Safe basin for 

original system.  

The ratio of erosion area has been calculated 

using Eq.(9) for both Melnikov’s function 

defined by Eqs.(4) and (7). Numerical 

simulations are also carried out for the 3DOF 

system to compare the results. Chen and Shaw 

(1997) pointed out that in order to implement 

phase space transport methods, the dynamics 

should be studied on the invariant manifold 

where lobes can be defined. Therefore, similar 

to their work, the initial conditions for the 

numerical simulations have been chosen as 

1720 points on the invariant manifold of roll 

dynamics, which are obtained by numerically 

calculated the safe points for the unperturbed 

system (basically the homoclinic orbit). Two 

points are picked on every direction of 1,y z and 

2z . A grid of (1720 2 2 2)   points are used 

as the initial conditions. For the numerical data, 

the ratio of erosion area is calculated using the 

points capsized in 10 cycles of external forcing 

divided by the total number of points. 

 

Fig. 3: The ratio of erosion area for different methods. 

Figure 3 shows the ratio of erosion areas for 

different methods. The results from both 

Melnikov’s methods are conservative 

compared to the numerical simulation results. 

And the results from the extended Melnikov’s 

method are more accurate than those from the 

standard Melnikov’s method, especially for 

larger wave amplitudes.  Compared to the time 

consuming 3DOF numerical simulations, the 

method of phase space transport based on the 

extended Melnikov’s method provides a fast 

way to estimate ratio of erosion with 
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reasonable accuracy. 

CONCLUSIONS REMARKS 

In this paper, the extended Melnikov’s method 

has been used to a roll-sway-heave coupled 

model which can be reduced to a slowly 

varying system. In order to obtain the 

homoclinic orbit, a quadratic damping term is 

treated as large. Although it is physically 

unrealistic to have a quadratic term in roll 

damping, it is used here just to demonstrate the 

feasibility of the method. Coupled with the 

method of phase space transport, this results in 

a fast and effective way to estimate the ratio of 

erosion with apparently conservative accuracy.  

This work is the first step of applying the 

extended Melnikov’s method to a special form 

of multi-DOF dynamical systems. It provides 

the possibility of applying the method to other 

multi-DOF problems in ship dynamics. 

ACKNOWLEDMENTS 

This work has been supported by Dr. Patrick 

Purtell under ONR Grant N00014-06-1-0551 

and Dr. Eduardo Misawa under NSF Grant 

CMMI 0747973. 

References 

Chen, S.L.; Shaw, S.W. and Troesch, A.W.: A Systematic 

Approach to Modelling Nonlinear Multi-DOF Ship 

Motions in Regular Seas. In: Journal of Ship Research. 43 

(1999) 25-37. 

Chen, S.L. and Shaw,S.W.: Phase Space Transport in a Class of 

Multi-Degree-of-Freedom Systems. In: Proceedings of 

1997 ASME Design Engineering Technical Conferences 

(DETC97)   

 

 

 

 

 

Falzarano, J.M.: Predicting Complicated Dynamics Leading to 

Vessel Capsizing. PhD dissertation, University of 

Michigan, Ann Arbor, 1990. 

Salam, F.M.: The Melnikov Technique for Highly Dissipative 

Systems.In: SIAM Jounal on Applied Mathematics.47 

(1987) 232-243.  

Spyrou, K.J.: Asymmetric Surging of Ships in Following Seas 

and its Repercussions for Safety. In: Nonlinear Dynamics. 

43 (2006) 149-172. 

Wiggins, S.; Holms, P.: Homoclinic Orbits in Slowly Varying 

Oscillators. In: SIAM Journal of Mathematical Analysis. 

18(3) (1987) 612-629. 

Wiggins, S.: Chaotic Transport in Dynamical Systems. (1992) 

Springer-Verlag, New York. 

Wiggins, S.; Holms, P.: Errata: Homoclinic Orbits in Slowly 

Varying Oscillators. In: SIAM Journal of Mathematical 

Analysis. 15(9) (1988) 1254-1255. 

Wu, W. and McCue, L.S.: Melnikov's Method for Ship Motions 

Without the Constraint of Small Linear Damping. In: 

Proceedings of IUTAM Symposium on Fluid-Structure 

Interaction in Ocean Engineering, (2007), Hamburg, 

Germany. 

Wu, W. and McCue, L.S.: Application of the extended 

Melnikov's Method for Single-degree-of-freedom Vessel 

Roll Motion. In: Ocean Engineering. 35 (2008) 1739-1746. 

Wu, W., Spyrou, K.J. and McCue, L.S.: Improved Prediction of 

the Threshold of Surf-riding of a Ship in Steep Following 

Seas. In: Ocean Engineering. (2010) 

doi:10.1016/j.oceaneng.2010.04.006 

Wu, W.: Analytical and numerical methods applied to nonlinear 

vessel dynamics and code verification for chaotic 

systems. PhD dissertation, Virginia Tech, Blacksburg, 

2009. 

 


