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ABSTRACT 

The paper investigates the effectiveness of the generalized Pareto Distribution (GPD) for modelling the tail of 
the distribution of ship rolling motions and particularly, for calculating the probability of capsize in beam seas. 
To this end, large-scale Monte Carlo numerical experiments were performed for an ocean surveillance ship 
assumed to operate in two qualitatively different, in terms of the observed frequency of stability failures, sea 
states; one where capsizes are realized quite often and another where they are extremely rare. For both sea 
conditions, GPD models were fitted to datasets containing roll exceedances above a pre-defined threshold and 
their reliability is tested herein against the rough Monte Carlo estimates, obtained by direct counting. The 
possibility of approximating the tail through several GPDs is discussed and the idea of associating threshold 
selection with the shape of the GZ curve is proposed for enhancing the accuracy of the approach. To evaluate 
the rumored “extrapolation” character of the GPD beyond the largest observation used in the fitting procedure, 
a comparison with the predictions of the “critical wave groups” method is presented for the second (mild) sea 
state. 

Keywords: Probability, Capsize, Generalized Pareto Distribution, Statistical extrapolation, Extreme events, Critical wave groups. 

1. INTRODUCTION

Several techniques can be employed for
obtaining the distribution of the responses of a 
dynamical system subjected to random excitation 
(e.g. Chai et al., 2017). However, their application in 
the problem of ship capsize is hindered by their large 
computational requirements and/or deficiencies in 
dealing with the complexity of ship dynamics at 
large angles. Brute-force Monte Carlo simulations, 
despite being very attractive due to their accuracy, 
can easily turn into a computationally intensive 
exercise when a large number of extremely rare 
events, like capsizing, must be produced. 

One possibility to alleviate the problem could be 
the tools provided by Extreme Value Theory (EVT), 
a branch of statistics focused on making inferences 
about the extreme values in a random process. 
Specifically, the second extreme value theorem 
(Balkema and de Haan, 1974; Pickands, 1975) states 
that, under certain conditions, the generalized Pareto 
distribution (GPD) is a limiting distribution for 
excesses over thresholds. This has motivated the 
development of a number of threshold-based 

methods seeking a solution to the problem of rarity 
of extreme ship responses through fitting the GPD to 
data obtained from pertinent time-domain 
simulations (e.g. Belenky et al., 2016; Campbell et 
al., 2016). Nonetheless, it is the strong data-driven 
character of such methods that may eventually 
deteriorate their effectiveness and therefore, their 
application for direct ship stability assessment 
remains an open question. 

As is well known, the main issue, arising rather 
naturally in practical implementations of the 
theorem, is the selection of an appropriate threshold 
for fitting the GPD. Despite the model being 
mathematically exact at infinitely high levels, it is 
believed that it could still be reliable if determined 
with respect to a sufficiently high threshold. This, 
runs the danger, on the one hand, of idly expending 
computational resources if an exceptionally high 
threshold is set, resulting in datasets with only few 
(if not any at all) extremes. On the other hand, a 
lower threshold may not be able to produce reliably 
the tail. In practical ship stability, normally we do 
not need very large roll angles for judging safety 
since, beyond some moderate to high angle, the 
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flooding of closed spaces is inevitable. Hence, a 
question is raised whether the GPD could be 
meaningfully applied towards developing a stability 
criterion. Much of effort has been put over the last 
years in efficiently fitting the GPD using reasonably-
sized datasets generated by fast, yet qualitatively 
realistic, hydrodynamic codes (e.g. Weems et al., 
2016). 

In our current work, the possibility of analyzing 
the tail structure through successive GPD fits is 
discussed for the problem of ship rolling in beam 
seas. At the same time, an attempt is made to 
associate threshold selection with the shape of the 
GZ curve of a vessel. The idea is to identify regimes 
where response exhibits different probabilistic 
qualities and then, utilize the limits of these regimes 
for thresholding. The performance of the approach 
for calculating the probability of capsize in severe 
sea conditions is tested against the rough Monte 
Carlo estimates, obtained by direct counting. Finally, 
to evaluate the reliability of the GPD for “statistical 
extrapolation” (i.e. for predicting events beyond the 
largest observation used in the fitting procedure), a 
comparison with the results of the “critical wave 
groups” method (Anastopoulos and Spyrou, 2018) is 
presented for a sea state characterized by very rare 
extremes. 

2. MATHEMATICAL BACKGROUND

In this section, the second extreme value
theorem is formulated and the basic properties of the 
GPD are outlined. The potential of the model for 
treating the problem of rarity, described in the above, 
is discussed in the context of a more general 
framework, commonly known as the “principle of 
separation” (e.g. Belenky et al., 2012; Mohamad and 
Sapsis, 2016). 

The principle of separation 

The term is often utilized to express the idea of 
decomposing the ship response problem into sub-
problems with the aim of analyzing the rare extremes 
separately from a background state, mostly 
associated with conventional non-rare outcomes. 
Thence, the “non-rare” part deals with the 
distribution of the conditions that can lead to the 
occurrence of extreme events, while the “rare” one 
targets the conditional probability of extremes, given 
that specific conditions are met: 

𝑃𝑟(𝑋 > 𝑥) = 

𝑃𝑟(𝑋 > 𝑥|𝑋 > 𝑢∗)ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௥௔௥௘

×  𝑃𝑟(𝑋 > 𝑢∗)ᇣᇧᇧᇤᇧᇧᇥ
௡௢௡ି௥௔௥௘

 
(1) 

where 𝑋 is the response process, 𝑥 is the associated 
state variable and 𝑢∗ is a threshold introduced for 
distinguishing extreme from non-extreme regimes. 

As realized, ship motions have, thus far, been 
classified with respect to their relative frequency of 
occurrence (rare/non-rare), rather than according to 
the corresponding level of nonlinearity governing 
the dynamics of each sub-problem. In the “rare” part, 
however, one is confronted with phenomena that are 
not only very unlikely, but also strongly nonlinear. 
On the contrary, a “non-rare” event is not essentially 
linear; neither nonlinearity itself is sufficient to infer 
rarity. To explicitly account for the effect of 
nonlinearity also on the solution of the “non-rare” 
part, the last term in Eq. (1) is further decomposed 
as: 

𝑃𝑟(𝑋 > 𝑢∗) = 

𝑃𝑟(𝑋 > 𝑢∗|𝑋 > 𝑢௅)ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௡௢௡௟௜௡௘௔௥

 

×  𝑃𝑟(𝑋 > 𝑢௅)ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௟௜௡௘௔௥

 
(2) 

where 𝑢௅ is an intermediate threshold indicating the 
limit between linear and nonlinear ship responses 
within the “non-rare” sub-region. Definitely, 
through this concept, one could go even deeper by 
disassembling both the “rare” and “non-rare” sub-
problems of Eq. (1) in more parts; yet this would 
require a rational procedure for selecting those 
additional intermediate thresholds 𝑢௜, 𝑖 = 1, … , 𝑛 
that would separate regimes with different levels of 
nonlinearity. 

In this setting, it is straightforward to calculate 
the last term in Eq. (2) using a Gaussian distribution. 
Mathematical justification for the solution of the 
“rare” sub-problem will be provided by the second 
extreme value theorem, presented in the following 
section. As for the probability of non-rare and 
nonlinear events, there are numerous statistical 
models to try. In this study, however, the GPD is 
employed once again knowing that it embodies a 
large class of distribution functions covering a 
continuous range of possible shapes. This allows for 
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the data to decide the most suitable amongst the 
models integrated into the GPD. 

The generalized Pareto Distribution (GPD) 

Generally, the GPD is specified by three 
parameters (𝑢, 𝜎, 𝜉) and below it is expressed in 
terms of its complementary distribution function 
𝐹௑(𝑥) = 1 − 𝐹ത௑(𝑥): 

𝐹ത௑(𝑥)

=

⎩
⎪
⎨

⎪
⎧

ቆ1 +
𝜉(𝑥 − 𝑢)

𝜎
ቇ

ିଵ/క

, 𝑖𝑓 𝜉 ≠ 0

𝑒𝑥𝑝 ቀ−
𝑥 − 𝑢

𝜎
ቁ  , 𝑖𝑓 𝜉 = 0

(3) 

where 𝑥 ≥ 𝑢, if 𝜉 ≥ 0 and  𝑢 ≤ 𝑥 ≤ 𝑢 − 𝜎/𝜉, if 𝜉 <

0. In Eq. (3), 𝑢 is the location parameter of the 
distribution representing the minimum value that the 
associated random variable 𝑋 can attain. Whenever 
the GPD is employed for modelling the tail of 
another distribution, 𝑢 is basically the point where 
the two distributions merge. The scale parameter 𝜎 
is the “spread” factor, controlling the dispersion of 𝑋 
above 𝑢. Finally, 𝜉 affects the shape of the 
distribution in a more qualitative way. For 
distributions with exponentially decreasing tails, 
such as the Normal, the GPD leads to 𝜉 = 0. For 
heavy-tailed distributions, often encountered in the 
case of unbounded systems, 𝜉 > 0. The opposite 
(𝜉 < 0) implies a light-tailed distribution and thus, 
the existence of an upper bound at 𝑥 = 𝑢 − 𝜎/𝜉. 

The theoretical importance of Eq. (3) was proved 
by Balkema and de Haan (1974) and Pickands 
(1975) who showed that the distribution of 
independent and identically-distributed (i.i.d.) 
excesses over 𝑢 asymptotically tends towards the 
GPD, as 𝑢 → ∞. The statement holds if and only if 
the parent distribution belongs to the so called 
“domain of attraction” of one of the extreme value 
distributions (i.e. Gumbel, Fréchet and reverse 
Weibull), all incorporated into a single model, 
known as the generalized Extreme Value 
distribution (GEV). Moreover, it can be verified that 
if times until exceedance constitute a Poisson 
random process with GPD excesses, then the GEV is 
obtained as the distribution of the corresponding 
extremes. Another interesting property of the GPD 
is “threshold stability”, meaning that if 𝑋 is a GP-
distributed random variable for some 𝑢∗ > 0, then it 
is also generalized Pareto for any  𝑢 > 𝑢∗ retaining 
the same shape parameter. It is worth noting that the 

GPD is uniquely characterized through the last two 
properties since no other family of distributions 
exhibits such qualities (Davison and Smith, 1990). 

Threshold selection 

On these terms, it is rather natural to assume that 
local stabilization of the shape parameter could be 
the key for detecting the minimum threshold value 
above which the distribution of excesses has 
practically converged to the GPD. The idea has been 
discussed in several studies, often in comparison 
with alternative identification procedures, such as 
those described in e.g. Campbell et al. (2016). Yet, 
the threshold stability property itself could be the 
source of inherent limitations in pinning down the 
threshold. If a dataset obeys the GPD at one 
threshold, then, the model, in order to preserve its 
validity at all higher thresholds, should be free to 
adapt through its only left unconstrained parameter, 
i.e. the scale parameter. Equally, restricting the
threshold to a fixed value in an attempt to extrapolate
a trend into the tail region could entail the possibility
of overfitting.

The invariance of the model form at high levels 
was an additional motivation for investigating the 
tail structure by employing successive GPDs in Eqs. 
(1) and (2). Even though consistency with the
theorem may not be fulfilled for 𝑢௅, being essentially
the angle up to where ship motions are relatively
small, the GPD, due to its very flexibility, will
probably succeed in fitting data within the
intermediate range [𝑢௅, 𝑢∗]. The crucial step,
however, is the selection of 𝑢∗ so as to reflect a lower
bound for the occurrence of extremes. From a ship
design perspective, the angle 𝜑௠௔௫ corresponding to
the maximum of the GZ curve could be tried since
rolling beyond this limit is quite likely to result in
capsize or, at least, in an extreme dynamic event.

3. RESULTS AND DISCUSSION

Massive Monte Carlo simulations were
performed for an ocean surveillance ship, with main 
parameters listed in Table 1, to evaluate the accuracy 
of the GPD-based approach presented in the above. 
The concept of separation, as expressed through Eqs. 
(1) and (2), is illustrated in Figure 1, where the GZ
curve of the vessel is divided into three sub-regions
with limits indicated by vertical lines:
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I. 𝜑 ∈ [0, 𝑢௅], with 𝑢௅ = 20deg

II. 𝜑 ∈ [𝑢௅, 𝑢∗], with 𝑢∗ = 37deg

III. 𝜑 > 𝑢∗

Table 1: Main parameters of the vessel. 

Parameter Dimensional value Dimensions 

𝐼 + 𝐴ସସ 5.540 × 10଻ 𝑘𝑔 ∙ 𝑚ଶ 

𝛥 2.056 × 10଺ 𝑘𝑔 

𝛣ଵ 5.263 × 10଺ 𝑘𝑔 ∙ 𝑚ଶ/𝑠 

𝛣ଶ 2.875 × 10଺ 𝑘𝑔 ∙ 𝑚ଶ 

𝐶ଵ 3.167 𝑚 

𝐶ଷ −2.513 𝑚 

Figure 1: The restoring arm of the vessel divided into sub-
regions: (I) non-rare/linear, (II) mildly rare/nonlinear and 
(III) rare/nonlinear.

The ship is assumed to operate in sea conditions
described by the Bretschneider spectrum (Ochi, 
1998): 

𝑆ఎఎ(𝜔) =
1.25

4

𝜔௣
ସ

𝜔ହ
𝐻௦

ଶ𝑒𝑥𝑝 ቈ−
5

4
∙ ቀ

𝜔௣

𝜔
ቁ

ସ

቉ (4) 

where 𝐻௦ is the significant wave height  and 𝜔௣ =

2𝜋/𝑇௣ is the modal frequency of the spectrum. Two 
sea states of slightly different severity were duly 
selected for demonstrating certain capabilities and 
limitations of the proposed method. Their 
characteristics are given in Table 2. 

Table 2: Sea state characteristics. 

𝑯𝒔 𝑻𝒑 

Sea state A 4m 11s 

Sea state B 3m 11s 

Time-histories of roll motion 𝜑(𝑡) were 
generated using a simple 1DOF roll equation: 

(𝐼 + 𝐴ସସ)�̈� + 𝐵ଵ�̇� + 𝐵ଶ�̇�|�̇�| + 

+𝑔𝛥(𝐶ଵ𝜑 + 𝐶ଷ𝜑ଷ)

= 𝑀(𝑡) 
(5) 

with 𝐼+𝐴ସସ being the total roll moment of inertia 
(including the added mass effect), 𝑔 is the 
gravitational acceleration, 𝛥 is the ship displacement 
and 𝐵ଵ, 𝐵ଶ and 𝐶ଵ, 𝐶ଷ are the damping and restoring 
coefficients, respectively. The wave-induced 
moment was modelled using the standard spectral 
representation method (St. Denis and Pierson, 1953): 

𝑀(𝑡) = 

 ෍ ට2𝑆ఎఎ(𝜔௡)𝐹௥௢௟௟(𝜔௡)𝛿𝜔௡ cos 𝜃௡(𝑡)

௡

 (6) 

where 𝜃௡(𝑡) =  𝜔௡𝑡 + 𝜀௡. In Eq. (6), 𝜀௡ are random 
variables uniformly distributed over [0,2π), 𝑑𝜔 is the 
frequency resolution, 𝐴௡ are the amplitudes of the 
wave components and 𝜔௡ are the associated 
frequencies. Details for the roll moment amplitude 
operator 𝐹௥௢௟௟ of the vessel can be found in Su 
(2012). 

Eventually, statistics of roll motion were 
obtained without assuming the ergodic property for 
the response. Consequently, the analysis was made 
on a set of 6,000,000 short-duration realizations, 
sampled at a fixed time instant 𝑡௦ = 150s. The great 
benefit from this approach is that collected roll data 
are statistically independent, as required by the 
second extreme value theorem. Roll data were 
partitioned in 15 datasets and for each dataset, the 
GPD parameters (shape and scale) were calculated 
using the Maximum Likelihood Estimation method 
(MLE). The mean values of the 15 pairs of 
parameters were selected as the most representative 
values for fitting the whole dataset (6,000,000 
samples).  

Sea state scenario A 

In this case study the objective is to evaluate the 
reliability of the GPD for calculating the probability 
of capsize when data are available in the entire range 
of stability [0, 𝜑௩], where 𝜑௩ = 64deg is the angle of 
vanishing stability of the vessel. The selection of the 
capsize limit was based on the well-known feature 
of Eq. (5) concerning the time-depending shifting of 
the unstable equilibrium in the presence of wave 
excitation (e.g. Falzarano et al., 1992). In this regard, 
response trajectories that exceeded (in absolute 
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sense) the limiting value 1.2𝜑௩ before reaching 𝑡௦ =

 150s were marked as corresponding to capsize, 
resulting in a total number of 393 capsizes for the 
specific sea state. No doubt, considering stability 
failure at an exceptionally high roll angle is 
unreasonable since flooding is very likely to occur at 
lower angles. As a matter of fact, it is sufficient to 
confirm accuracy in GPD predictions only up to 
intermediate roll angles representing practical 
capsize limits (e.g. 40deg-50deg). For scientific 
curiosity reasons however, and since a similar model 
could be the subject of investigation in a different 
(non-marine) context,  the tail region [𝜑௠௔௫, 𝜑௩] is 
examined in its entirety just for highlighting 
particular features of the ship rolling process that 
may not be so evident at lower levels. 

Next, results are first presented for the case of 
“bounded” ship motions, meaning that desired 
statistics were computed after filtering out the 393 
capsize cases. As realized, eliminating the 
possibility of capsize may conceal valuable 
information for our analysis. It is, nevertheless, 
interesting to investigate the effectiveness of 
traditional techniques of EVT, such as the 
POT/EPOT (peaks or envelope peaks over 
threshold) methods, which rely solely on the peak 
excesses of a random process for fitting the GPD. 
Since a “peak” by definition implies the return of a 
response trajectory towards the upright state, it is 
clear that these methods deal with a qualitatively 
different problem where the underlying system 
remains always bounded. On the contrary, in our 
approach the GPD is fitted to all the exceedances 
recorded at the selected sampling instant 𝑡௦, 
regardless of being peaks. 

Figure 2 shows the probability of exceedance 𝑃௘ 
of rolling angles 𝜑 ∈ [0, 𝜑௩] derived from the Monte 
Carlo (MC) simulations through direct counting 
(circles) for the bounded system. The solution of the 
linear “non-rare” sub-problem, being the Gaussian 
fit curve (solid line), is extended up to region (III) 
for comparison purposes. Dashed lines indicate the 
solution of the combined nonlinear sub-problem 
(“non-rare” + “rare”), obtained by two individual 
GPD fits; one in region (II) and one in region (III). 
The shaded area illustrates the corresponding 95% 
confidence interval (CI). In analogy to Figure 1, 
vertical lines denoting the limits of regions (I-III) are 
included. Details for the estimated GPD parameters 
are provided in Table 3.  

Table 3: GPD fitting results (bounded system). 

region II: [ 20deg, φmax ] 

scale parameter shape parameter 
mean value 95% CI mean value 95% CI 

3.471 [3.443, 3.499] -0.024 [-0.029, -0.018] 

region III: [ φmax, 64deg ] 

scale parameter shape parameter 
mean value 95% CI mean value 95% CI 

3.550 [3.240, 3.860] 0.071 [-0.019, 0.161] 
 

 
Figure 2: GPD fits (dashed lines) vs. rough Monte Carlo 
estimates (circles) for the bounded system. 

As observed, there is good coincidence between 
the proposed calculation scheme and the MC results 
in the entire range of stability of the vessel. 
Moreover, the negative shape parameter in region 
(II) confirms the existence of a right boundary, as 
anticipated. Despite that, a heavy tail is eventually 
obtained since in region (III) the shape parameter 
becomes positive, yet with the associated confidence 
interval containing also negative values. The fact 
that the method fails to maintain the light tail trend 
in region (III) is, therefore, explained by the 
uncertainties arising in the estimation of the shape 
parameter at higher levels, where data are naturally 
fewer. Finally, it is remarkable that there is less 
discrepancy in the computation of the scale 
parameter, given that its value is practically the same 
in both regimes.  

Below, the assumption of bounded motions is 
removed to assess the validity of the treatment 
presented so far. To this end, statistics were derived 
separately for threshold exceedances that led to 
capsize (“escapes”) and for short-time exceedances 
that remained bounded in the long run (“returns”). In 
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Figure 3, 𝑃௖ is the conditional probability of a 
return/escape, given that a roll angle threshold 𝜑, 
displayed on the horizontal axis, has already been 
exceeded. Since 𝑃௖ is, in fact, the ratio of observed 
escapes/returns to the total number of exceedances 
over a threshold 𝜑 ∈ [0, 𝜑௩], this plot essentially 
reflects the contribution of each outcome to the 
overall probability of exceedance 𝑃௘. A circle has 
been placed on the curve of the escapes at 𝑢∗ =

𝜑௠௔௫ to highlight that in region (III) extremes are, at 
least, 34% underpredicted with respect to their 
“true” values that would be obtained if capsizes had 
been included in the calculations. This demonstrates 
the necessity of developing methods free of 
POT/EPOT-like assumptions, often introduced in 
the light of “strict-sense stationarity” of ship 
response (Kougioumtzoglou and Spanos, 2014). 

 
Figure 3: Contribution of escapes and returns to the total 
probability of a threshold exceedance. 

At the same time, Figure 3 reveals new locations 
for potential thresholding, other than those used in 
this study. Even more, one may be tempted to 
analyze individual sub-problems into more parts 
than those proposed here. For instance, one could 
perform the decomposition over both/either the point 
where the two curves intersect (e.g. at 40deg) and/or 
the angle where the maximum curvature on the 
escapes curve is observed (e.g. at 50deg). However, 
proceeding to exhaustive decompositions is not 
recommended because information could be lost due 
to the separation principle itself. The concept 
assumes that threshold exceedances have negligible 
dependence on the statistics below the threshold. In 
this sense, it may be more difficult to capture the 
whole picture when approximating the solution 
through a large number of conditionals, considering 
that extremes may not eventually be consistent with 

the mechanism that generates the main body of the 
data.   

In Figure 4, the probability of exceedance 𝑃௘ was 
derived by analyzing the entire sample, including the 
393 capsize cases. The notation is the same as in 
Figure 2. The results of the corresponding GPD 
fitting procedure are summarized in Table 4. As 
noticed, the MC trend (circles) implies a heavy tail 
that in region (III) becomes almost parallel to the 𝜑-
axis. However, this cannot be inferred from the GPD 
model of the current method (dashed lines). 
Evidence for the tail structure has already been given 
in Figure 3 where it is shown that above 40deg 
exceedance probabilities are mostly determined by 
the escaping trajectories. With returns gradually 
vanishing in the very extreme region (𝜑 > 50deg), 
the probability of exceedance 𝑃௘ naturally tends to 
the probability of capsize (393 capsizes / 6,000,000 
samples). In Figure 4, this resulted in almost two 
orders of magnitude greater probabilities than those 
presented in Figure 2 for the bounded system. 

Table 4: GPD fitting results (unbounded system). 

region II: [ 20deg, φmax ] 

scale parameter shape parameter 
mean 
value 

95% CI 
mean 
value 

95% CI 

3.221 [3.200, 3.243] 0.085 [0.080, 0.090] 

region III: [ φmax, 64deg ] 
scale parameter shape parameter 

mean 
value 

95% CI 
mean 
value 

95% CI 

7.038 [5.526, 8.551] 0.781 [0.657, 0.904] 
 

 
Figure 4: GPD fits (dashed lines) vs. rough Monte Carlo 
estimates (circles) for the unbounded system.  
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The poor performance of the method could stem, 
at least partially, from the very special shape of the 
roll response distribution, provided that validity of 
the GPD is asserted only if the underlying 
distribution belongs to the domain of attraction of 
the GEV distribution. However, there is no proof on 
whether ship rolling truly fulfills this requirement. It 
is remarkable, though, that in region (III) the 
produced GPD is characterized by a large positive 
shape parameter, indicating that the model realizes 
the qualitative changes induced by the now existing 
possibility of system escape. Again, large 
uncertainties are observed in region (III), despite the 
presence of quantitatively more extremes than in the 
case of bounded motions.  

Although having a “rich”, in terms of capsize 
occurrences, sample enhances the reliability of the 
MC estimates, the coexistence of states with distinct 
dynamics (escapes-returns) entails technical 
difficulties in their joint statistical description. 
Specifically, to calculate exceedance probabilities 
from a sample containing aggregated data of escapes 
and returns, one has to define the “capsize state” 
(here noted as 𝜑ஶ). In our MC setup, if a response 
trajectory exceeded the capsize limit 1.2𝜑௩ at some 
time instant 𝑡 < 𝑡௦, the integration of Eq. (5) was 
terminated and a fixed value 𝜑ஶ = 1.2𝜑௩ was 
eventually kept for further analysis (e.g. Figure 4). 
On the other hand, assigning the exact same value 
𝜑ஶ to all capsized cases will inevitably result in 
artificial “mass” concentration in the corresponding 
probability density function (PDF), as illustrated in 
Figure 5. Due to the data-driven nature of fitting 
procedures, the location of this mass is expected to 
affect the calculation of the GPD parameters. 

 
Figure 5: Sensitivity of GPD estimates to the statistical 
description of escapes. 

The sensitivity of the current method to the 
selection of 𝜑ஶ in calculating the probability of 
exceeding 50deg was investigated for four 𝜑ஶ 
scenarios (1.2𝜑௩, 80deg, 90deg and 180deg). The 

results confirmed that by changing the relative 
distance between 𝜑ஶ and the main probability mass 
the GPD monotonically overestimates (from 1.2 up 
to 2.4 times) the corresponding probability obtained 
from the MC simulations in Figure 4. Hence, in 
Figure 4, the GPD was shown in its utmost 
performance since setting 𝜑ஶ > 1.2𝜑௩ would 
certainly deteriorate its accuracy. This is because the 
sample variance in region (III) varies through 𝜑ஶ 
and thus, the GPD adapts, although not very 
successfully, to the data. This sensitivity justifies 
why the scale parameter is larger in Table 4 than in 
Table 3, where the 𝜑ஶ parameter is not involved.  

Sea state scenario B 

Lowering 𝐻௦ by only 1m leads to substantial 
changes in ship behavior, given that for the specific  
sea conditions all the collected observations were 
below 𝜑௠௔௫ (no capsizes recorded). Therefore, the 
interest here lies in utilizing the GPD for predicting 
events that are considerably more extreme than those 
found in the available simulation data. However, 
evaluating the “extrapolation” quality of the model 
having only few nonlinear/extreme data is a non-
trivial task. One idea could be to compute the 
percentage of datasets (out of the 15 partitions) with 
associated GPD estimates containing within their 
confidence band the “true” probability of stability 
failure (obtained by analyzing the entire sample). 
Although straightforward, the approach would still 
suffer from uncertainty issues due to the calculation 
of the GPD parameters from essentially small 
subsets (Weems et al., 2016). 

To avoid such problems, in this study the GPD 
trends are compared with the predictions of the 
“critical wave groups” method (Themelis and 
Spyrou, 2007). Unlike the method presented here, 
the “critical wave groups” scheme does not make 
any assumptions regarding the shape of the 
distribution of extreme responses. Instead, it 
quantifies instability tendency implicitly, through 
the probability of encountering any wave group that 
could provoke the instability using distributions 
describing statistical properties of the wave field. 
Recently, the potential of the method for handling 
the rarity of extremes was demonstrated by 
Anastopoulos and Spyrou (2018).  

Considering that the largest (in absolute sense) 
observed roll angle was only 35deg, the GPD was 
first fitted to exceedances over 𝑢௅ =  20deg. Then, it 
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was extrapolated to region (III). In Figure 6, the 
results (dashed line) are tested against the MC 
(circles). As before, the shaded area refers to the 
95% confidence intervals (CI) of the associated GPD 
parameters, given in Table 5. Information for the 
“critical wave groups” (CWG) probabilities is 
directly available from the work of Anastopoulos 
and Spyrou (2018) who applied the method to the 
vessel examined here and for the same sea 
conditions. Although their results cover the entire 
nonlinear part [𝑢௅, 𝜑௩], in this investigation, staying 
below 40deg seems to be sufficient for reaching 
conclusions since from very early (25-30deg) the 
GPD and the “critical wave groups” curves exhibit 
different trends. Besides, due to lack of data in 
region (III), the GPD confidence band will become 
excessively large. Finally, in this plot, the Gaussian 
fit (solid line) is not extended beyond region (I) 
because it was noticed that the result would be 
almost identical with the GPD curve. This is 
explained by the large confidence interval of the 
shape parameter in Table 5, indicating that nonlinear 
data are very few (only 2‰ of the sample size) 
because the ship spends most of the time below 𝑢௅. 
The GPD captures this feature but without further 
guidance it cannot do more than to extrapolate 
Gaussianity also in region (II). 

Despite the unambiguous linear character of the 
GPD in Figure 6, the negative shape parameter in 
Table 5 suggests that the model eventually turns into 
a light tail. Since the probability of capsize is, in 
general, non-zero (even for this seemingly 
innocuous sea state), a heavy tail should be expected. 
Here, though, it is masked by the problem of rarity, 
leading the GPD to assume the existence of a 
physical boundary. This is the reason for the 
deviation between the GPD and the “critical wave 
groups” curves. The latter succeeds in tracing the 
unobserved heavy tail and because of its consistency 
with the MC values from lower levels (20-25deg) 
one could argue that it is more appropriate for 
extrapolation in the specific sea conditions. 
However, in view of the inherent uncertainties in the 
interpretation of direct counting estimates when data 
in the range of interest are very few, comparing 
results obtained from techniques originating from 
different principles would, at least, contribute 
towards their mutual development, if not achieving 
the ultimate validation goal. 

 

Table 5: GPD fitting results (no escapes observed). 

region II: [ 20deg, φmax ] 

scale parameter shape parameter 
mean value 95% CI mean value 95% CI 

1.893 [1.836, 1.951] -0.051 [-0.071, -0.032] 
 

 
Figure 6: GPD fit (dashed line) vs. rough Monte Carlo 
estimates (circles) and comparison with the “critical wave 
groups” (CWG) predictions (dot-dashed line). 

4. SUMMARY AND CONCLUSIONS 

A method based on Extreme Value Theory 
(EVT) was proposed for calculating the probability 
of exceeding exceptionally high roll angles in beam 
seas. The method analyses the ship response 
problem into three parts (sub-problems), each 
associated with a different level of rarity and/or 
nonlinearity. For the first part, targeting statistical 
description of small-amplitude motions, a Gaussian 
distribution was utilized. In the nonlinear part, the 
solution was composed by fitting the generalized 
Pareto Distribution (GPD) to roll exceedances over 
two levels: a) a “non-rare” intermediate threshold 
and b) a “rare” extreme threshold. The selection of 
these thresholds was based on the shape of the GZ 
curve which provides indications for the limits of 
regimes where the response distribution exhibits 
qualitatively different probabilistic characteristics. 

The performance of the approach was tested 
against the rough estimates of Monte Carlo 
simulations, obtained by direct counting. Several 
aspects regarding the implementation of the 
approach were discussed and particular attention 
was given to the problem of capsize. The results 
reveal that, given “sufficient” data, the method can 
accurately determine the probability of extreme 
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dynamic events, yet if the possibility of system 
escape is practically zero. However, information is 
essentially lost due to this assumption since escaping 
induces qualitative changes in the shape of the 
response distribution. In the case of unbounded 
motions, though, the GPD-tail produced by our 
method could not fit the data successfully. In the 
light of this finding, one could speculate that ship 
capsize is not within the range of applicability of 
classical EVT tools.  

Finally, the “statistical extrapolation” character 
of the approach was evaluated through a comparison 
with the predictions of the “critical wave groups” 
method. In this context, preliminary evidence 
suggests that, for the examined sea conditions, the 
latter may be more suitable for making inferences 
beyond the largest observation. However, further 
investigation is definitely needed for reaching more 
general conclusions. Towards this direction, 
assessing methods with different backgrounds 
against each other seems the only option for their 
mutual validation in regimes where extremes cannot 
be directly “seen” through straightforward Monte 
Carlo procedures. It should be noted, though, that the 
desire of controlling the probability of stability 
failures directly through the ship design parameters 
requires, in fact, knowledge of the GPD form at a 
time when simulation data are often not available. 
Therefore, even if the effectiveness of the GPD idea 
is eventually proven, this very desire will 
presumably remain unsatisfied due to the data-
driven nature of the concept itself. 
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