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ABSTRACT 

In this paper, we present a method to observe the extreme response of a nonlinear dynamic system in the time 

domain. The goal of the research is to provide short-time-window environments for a ship in a seaway such 

that different dynamical extreme events can be simulated. Although much work focuses on a means to 

determine the probability of an extreme, this work seeks to observe the extreme in the time domain such that 

causal relationships can be uncovered and the design can be improved. Previous work has shown how the 

Design-Loads Generator (DLG) method works for different ship processes such as heave, slamming, and roll, 

but due to the complicated nature of these processes, and the lack of truth about the probability distribution of 

the process, there are still open questions about the accuracy of the method, particularly with regard to 

application to nonlinear systems.  In this paper we study a very simple problem that has nonlinear behavior 

but is simple enough that the distribution of extreme response can be obtained to evaluate the DLG method. 

Specifically, a bilinear oscillator under Gaussian band-limited white noise force is studied. The results from 

the proposed method are compared with the long-time Monte Carlo Simulation. As part of this study the 

sensitivity of extreme response distribution to the initial conditions, and the length of time around the extreme 

that should be simulated is analyzed for this problem. 
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1. INTRODUCTION

Naval architects are interested in extreme ship

responses when designing marine vessels. Extreme 

responses like large roll, large vertical bending 

moment, and etc. can bring failure to the vessel 

during its operation. Though the wave or wind 

loading can be regarded as Gaussian stochastic 

processes, the response might not be as simple as 

Gaussian due to nonlinearity of the dynamic 

systems. It is fundamental to accurately predict and 

simulate extreme responses of nonlinear dynamic 

systems. 

To capture the extreme response associated to a 

long exposure time window which lasts years or 

decades, a brute-force long-time Monte Carlo 

Simulation (MCS) using high-fidelity numerical 

tools is not possible. For example, the Navier-Stokes 

equation solver in computational fluid dynamics 

(CFD) can take days to complete a simulation 

window of minutes, not to mention that the large 

number of deterministic simulations that are 

required in order to describe the distribution clearly. 

One advantage of being able to model the extreme 

response in time domain is that it allows for 

observation of the events and environment that leads 

to an extreme such that the design can be improved. 

Also, high-fidelity tools that are expensive should 

only be used when necessary, which is namely when 

the dynamical system exhibits strong nonlinearity.  

For example, rms motion for a ship can be estimated 

by linear or weakly nonlinear potential-flow 

methods, but the largest motion excursions should be 

studied using full-scale Reynolds number 

computational fluid dynamics simulations.  

In this paper, short-time MCS are prescribed for 

a bilinear oscillator as a surrogate for a ship 

dynamical response. The bilinear oscillator model is 

chosen since it is simple enough to efficiently 

evaluate the response using long-time MCS, and it 

can be significantly nonlinear to produce a fully non-

Gaussian response. In addition, many marine 

behaviors, like offshore mooring system, can be 

suitable modeled as bilinear oscillators (Thompson, 

1983). The current paper demonstrates the DLG 

process and discusses the effect of the nonlinearity, 

the sensitivity of the initial condition, and the 
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computational cost of the current method when 

modeling extreme responses in the time domain. 

2. TECHNICAL APPROACH

The Design-Loads Generator has been used to

predict extreme ship responses (Alford et. al., 2009, 

2011, Kim et. al., 2012, Xu, et. al., 2019). A very 

brief summary of the method is presented here for a 

generic dynamical system. 

Given the design time window length 𝑇𝐿which is

too long to directly simulate, the largest response 

during the time, denoted as 𝑀𝑋(𝑇𝐿), is a random

variable. They are many studies to determine the 

distribution of 𝑀𝑋(𝑇𝐿). A generalized extreme value

distribution (GEVD) can fit well to asymptotic 

behavior of distributions belonging to Fréchet, 

Weibull or Gumbel families. With Poisson 

assumption, a Peaks-over-Threshold (POT) model is 

developed to determine the extreme value 

distribution (Smith, R.L., 1987). The sub-asymptotic 

behavior can be fitted to the tail of extreme values 

by a parametric model (Naess A, Gaidai O. 2008). In 

the current paper, an affordable medium-long time 

window, denoted by 𝑇𝑚, is simulated to collect local

maximas and spectrum of oscillator’s response. The 

local maximas are then used to extrapolate the 

extreme value distribution from window 𝑇𝑚 to

window 𝑇𝐿.

Once the extreme value distribution for 𝑇𝐿and

response energy spectrum are achieved, the Design 

Loads Generator (DLG) method (Kim, 2012) is 

applied to generate short-time response waveforms 

around the extremes. The DLG method, which is an 

Acceptance-Rejection based filter algorithm, is able 

to generate phases such that the resultant extremes 

follow the extrapolated distribution of 𝑀𝑋(𝑇𝐿).

𝑀𝑋(𝑇𝐿) =∑𝐴𝑋𝑖𝑐𝑜𝑠𝜙𝑖

𝑁

𝑖=1

 (1) 

where 𝑀𝑋(𝑇𝐿) is the extreme response random

variable, 𝑁 is the number of Fourier components, 

𝐴𝑋𝑖 are the response 𝑖th Fourier amplitudes for

frequency 𝜂𝑖, and 𝜙𝑖 are the response random phases

generated by the DLG that correspond to an extreme 

from the distribution at a focusing time (𝜏 = 𝜏∗).

After the phases that lead to extreme response 𝜙𝑖

are generated, the corresponding extreme response 

waveforms are determined, each with time length, 

𝑇𝑠. Since the dynamic system is often nonlinear and

the explicit ODE is not available in many cases, a 

neural network is used to infer the system input 

(external force in this case) that leads to each 

waveform (Xu et. al., 2018). The neural net can be 

trained using system input and output from the 

medium-length (𝑇𝑚) simulation results.

A bilinear oscillator is used as the nonlinear 

dynamic system to illustrate the method to be 

introduced. The nonlinearity comes with the 

different stiffnesses under different response 

regions. More specifically, when the displacement of 

the oscillator is larger than or equal to zero, the 

stiffness coefficient is 𝑘1, and when the

displacement of the oscillator is smaller than zero, 

the stiffness coefficient is 𝑘2. The governing

dimensional ordinary differential equation (ODE) is 

written as follows. 

𝑚𝑥′′ + 𝑐𝑥′ + {
𝑘1
𝑘2

𝑥

=∑𝑎𝑖cos⁡(𝜔𝑓𝑖𝑡 + 𝜑𝑖)

𝑁

𝑖=1

 
(2) 

where 𝑚 is the mass of the oscillator, 𝑐 is the 

damping coefficient, 𝑥, 𝑥′, 𝑥′′ are the displacement, 

velocity, and acceleration of the oscillator 

respectively. The external driving force is 

represented as Fourier series with 𝜔𝑓𝑖 as the

frequencies, 𝑎𝑖 , 𝜑𝑖 as the corresponding amplitudes

and phases of the 𝑖th component.  

A dimensionless form of the equation is 

determined by first defining a characteristic period 

and the corresponding frequency as: 

𝑇 = 𝜋√𝑚/𝑘1 + 𝜋√𝑚/𝑘2

𝜔 =
2𝜋

𝑇
= √𝐾/𝑚 

(3) 

where 𝐾 =
4𝑘1𝑘2

(√𝑘1+√𝑘2)
2
. The discretized Fourier 

frequencies and time are be non-dimensionalized 

as: 

𝜂𝑖 = 𝜔𝑓𝑖/𝜔, 𝜏 = 𝑡𝜔 (4) 

Furthermore, the dimensionless displacement and 

the force amplitude are defined as: 

𝑋 = 𝑥/(∑𝑎𝑖

𝑁

𝑖=1

/𝐾), 𝐴𝑖 = 𝑎𝑖/∑𝑎𝑖

𝑁

𝑖=1

 (5) 

Finally, the dimensionless ODE is written as: 
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𝑋̈ + 2𝜁𝑋̇ + {
(1 + √𝛼)2/(4𝛼)

(1 + √𝛼)2/4
𝑋

=∑𝐴𝑖 𝑐𝑜𝑠 (𝜂𝑖𝜏 + 𝜑𝑖)

𝑁

𝑖=1

 

(6) 

where 𝜁 = 𝑐/(2𝑚𝜔) is the damping ratio, and 

𝛼 = 𝑘2/𝑘1is the stiffness ratio. Without losing 

generality, 𝛼 ≥ 1 is assumed, which means the 

negative half region has larger stiffness. 

The external force is a Gaussian process with a 

band-limited white noise energy spectrum, 

𝑆(𝜂) = {
𝑆0, 0 ≤ 𝜂 ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

The dimensionless frequencies are determined as 

𝜂𝑖 =
1

𝑁−1
𝑖, and the corresponding dimensionless 

amplitudes are 𝐴𝑖 = 1/𝑁, (𝑖 = 0,1,⋯ ,𝑁 − 1). The 

random phases 𝜑𝑖 are independently and uniformly 

distributed from −𝜋 to 𝜋. 

In this paper, the results at different level of 

nonlinearity (different values of 𝛼) from the 

proposed method are compared with the long-time 

MCS results. The sensitivity of the extreme 

distribution to various initial conditions are 

discussed. The required length of time used in short-

time (𝑇𝑠) simulations will also be analyzed in the 

workshop. 

3. RESULTS 

The oscillator’s responses are all simulated using 

MATLAB ode45. One realization of such responses 

under random external force is shown in Fig. 1.  

 

Figure 1: One realization of oscillator’s response under 

random external force (𝛼 = 𝟓, 𝜻 = 𝟎. 𝟏, (𝑿𝟎, 𝑿̇𝟎) = (𝟎, 𝟎)) 

The response is smaller in the negative region as 

expected due to the larger stiffness in this regime. 

Fig. 2 shows a 2000-realization ensemble of extreme 

waveforms with extreme time shifted to 𝜏 − 𝜏∗ = 0, 

where 𝜏∗is the time when extreme response occurs. 

 

Figure 2: A 2000-realization ensemble of extreme waveforms 

with extreme time shifted to −𝝉∗ = 𝟎, (𝑿, 𝑿̇) = (𝟎, 𝟎) . 

Fig. 3 plots the same data from Figure 2 in the 

form of a histogram that shows how the distribution 

of response evolves before, at, and after the extreme 

occurrence. 

 

Figure 3: Waveforms have smaller variance when extreme 

happens. 

The histogram of extreme values at the focusing 

time (𝜏 − 𝜏∗ = 0) is plotted in Fig. 4. To measure the 

sensitivity of extreme response values to different 

initial conditions, a grid scan of initial conditions 

(𝑋, 𝑋)̇is conducted and their histograms are plotted 

together with same transparency (=0.05) in Fig. 5. 

The blurriness in the edge qualitatively shows the 

dependency on the initial condition. (Larger 

dependency for more blurry edge). A quantitative 

measure for the dependency can be defined as the 

quantity 

𝐷 =
1

𝐵
∑𝜎𝑗

𝐵

𝑗=1

 (8) 

where 𝐵 is the number of histogram bins, and 𝜎𝑗 is 

the standard deviation among all histogram’s counts 

in bin 𝑗. The dependency measure will be compared 

at different levels of nonlinearity. 
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Figure 4: Extreme value histogram for the initial condition 

(𝑿, 𝑿̇) = (𝟎, 𝟎). 

 

Figure 5: An overlap of histograms corresponding to 

different initial conditions. 

 

Figure 6: Neural Network architecture to infer the driving 

force time series. (3 hidden layer, each with 10 neurons) 

The response spectrum and extreme response 

distribution will be compared at different 

nonlinearity. The distribution of waveforms at 

extreme time will be compared between long-time 

MCS and DLG-generated waveforms. A neural 

network shown in Fig. 6 is trained to infer the 

external forces producing each waveform. Finally, 

the simulated responses under inferred forces are 

compared with long-time MCS results. 
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