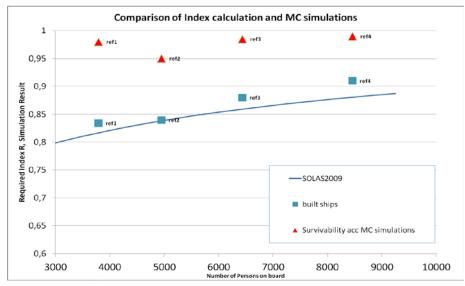


enhanced Stability After a Flooding Event

A joint industry project on Damage Stability for Cruise Ships

Project Summary

Henning Luhmann 12 June 2019



- eSAFE is a Joint Industry Project initiated by the CSSF
 - CSSF: Cruise Ship Safety Forum a tripartite organization of cruise operators, class societies and ship builders to enhance safety of cruise ships
- A group of CSSF members has sponsored the work.
 - Carnival, RCCL, DNVGL, LR, RINA, STX France, Fincantieri, Meyer Werft
- The work has partly been carried out also by external parties
 - MSRC, University of Trieste, NAPA, NTUA, Brookes Bell, Meyer Turku
- Duration of the project: 18 months (2017-2018)

- Safety level as indicated by SOLAS is significantly different to real case experiences and numerical simulations
- e.g. Costa Concordia stayed afloat for many hours, even though she was built to SOLAS90 standard
- Survivability indicated by simulations is >95%
- Damage Stability Regulations are largely based on model tests on RoPax
- Huge difference between RoPax and cruise ships
 - Different hazards and accident frequencies
 - Different sinking behavior (rapid capsize vs slow sinking) due to different internal subdivision
 Comparison of Index calculation and MC simulations
- → Need to have a closer look
 into damage stability
 for cruise ships
- → Explain the gap between SOLAS and numerical simulations

12 June 2019

- What can we learn from real operational patterns of cruise ships?
- Do we find a way to combine collision and bottom grounding and side grounding/contact into one methodology?
- How should an s-factor look like, which is based on cruise ships rather than ropax?
- We need a common industry standard on how to model internal subdivision of cruise ships for static and dynamic calculations
- Numerical simulation tools need to be validated by CFD and guidance has to be developed for acceptance of such simulations by approval bodies
- A systematic comparison of sample ships is needed to understand the different results for static calculations and time-domain dynamic simulations

We need to be able to assess the real safety level with regard to flooding of cruise ships and based on this, set appropriate standards

Structure of damage stability assessments

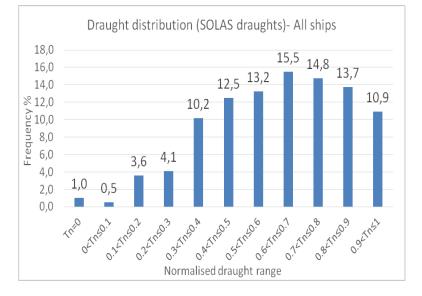
SOLAS approach SOLAS permeabilities Basic input data SOLAS draughts SOLAS probabilities definition (damages of lesser extent) of hull SOLAS damage zones breach ("zonal approach") Stages and phases sequence A-class boundaries of flooding **SOLAS S-factor** survivability Attained subdivision Survivability Index index A eSAFE summary ISSW 2019 12 June 2019

- Size and number of persons cover wide range of the fleet
- Very small cruise ships are missing
- 17 ships of different size and age
- 393 loading conditions

Findings from Onbard Survey

eSAFE

Initial draughts:


SOLAS 3 draught approach not suitable Two approaches recommended:

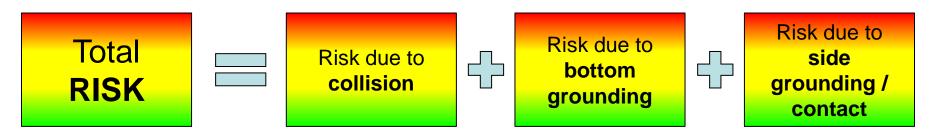
- **1-draught approach** considering only the subdivision draught to be used for numerical simulations
- 2-draught approach based on non-dimensional draughts 0.15 and 0.65 and weighted at 0.1 and 0.9 respectively for static calculations

Permeabilities

Variable permeability for tanks recommended

```
\rightarrow See paper Mike Cardinale et.al.
```


eSAFE


SOLAS approach	New developments	
SOLAS permeabilities	New permeabilities for tanks	Basic input
SOLAS draughts	new draught distributions	data
SOLAS probabilities (damages of lesser extent)		definition
SOLAS damage zones ("zonal approach")		of hull breach
Stages and phases A-class boundaries		sequence of flooding
SOLAS S-factor		Survivability
Attained subdivision index A		Survivability Index
eSAFE summary ISSW 2019	<u> </u>	12 June 2019

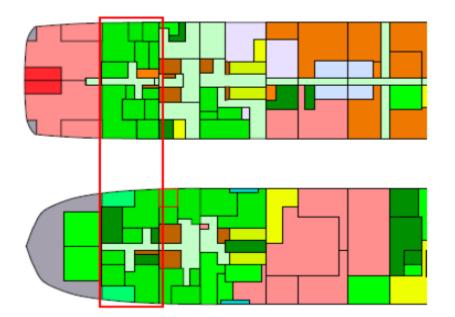
- SOLAS requirements focus on collision accidents
- Damage statistics show a significant risk also from bottom grounding and side grounding and contact
- Bottom grounding only covered by regulation II-1/9
 - Minimum double bottom height
 - Rather small extent of bottom damage to be survived if no double bottom is available
- Side grounding is not addressed at all

→ See paper Gabriele Bulian et.al.

The total societal risk due to flooding is given by the contribution from different types of accidents:

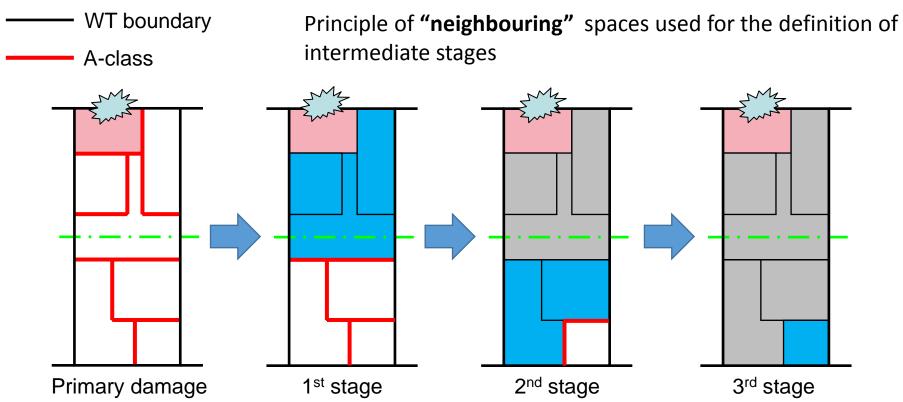
The review of the available risk models for collision and grounding indicate that they are not consistent enough to be used in a combined methodology.

Further research is needed, but in the meantime:


- A robust and validated tool to calculate collision, bottom and side grounding is available
- Attained indices for collision, bottom grounding and side grounding/contact are to be considered separately

eSAFE

SOLAS approach	New developments	
SOLAS permeabilities	New permeabilities for tanks	Basic input
SOLAS draughts	new draught distributions	data
SOLAS probabilities (damages of lesser extent)	U-factor for lower limit of collision breach	definition
SOLAS damage zones ("zonal approach")	Non-zonal approach for collision bottom and side grounding	of hull breach
Stages and phases A-class boundaries		sequence of flooding
SOLAS S-factor		
Attained subdivision index A		level of survival
eSAFE summary ISSW 2019		12 June 2019


Internal non-watertight subdivision of cruise ships may be very complex. All possible combinations would lead to too high number of stages

e.g. one zone damage \rightarrow >100,000 stages

13

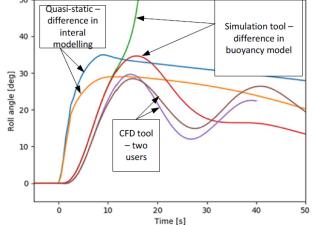
New practicable approach:

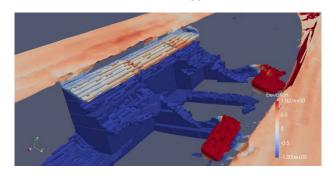
In each subsequent stage, spaces neighbouring those already flooded and separated by A-class boundaries, are set open to the sea

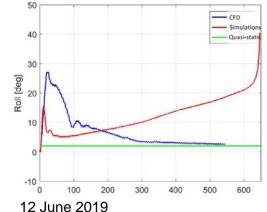
 \rightarrow New approach shows the same or slightly conservative results compared with previous approaches

eSAFE summary ISSW 2019

eSAFE


SOLAS approach	New developments	
SOLAS permeabilities	New permeabilities for tanks	Basic input
SOLAS draughts	new draught distributions	data
SOLAS probabilities (damages of lesser extent)	U-factor for lower limit of collision breach	definition
SOLAS damage zones ("zonal approach")	Non-zonal approach collision bottom and side grounding	of hull breach
Stages and phases A-class boundaries	Agreed handling of A-class boundaries	sequence of flooding
SOLAS S-factor		survivability
Attained subdivision index A		level of survival
eSAFE summary ISSW 2019	L	12 June 2019

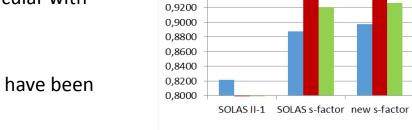

Validation of numerical simulations


- Numerical simulation tool validated with CFD
 - Reasonable correlation for transient flooding in calm water and waves
 - Larger differences for progressive flooding in regular waves
 - Causes not obvious
- Guidelines developed for third party review of numerical tools
 - Transient flooding
 - Assessment of critical wave height
- Simulation results are very sensitive on modeling assumptions
 - Guidelines for modeling developed
- The different tools have their strengths and weaknesses
 - Calculation time
 - calm water vs waves
 - Ship dynamic response
 - investigation of details vs overall survivability

\rightarrow See paper Eivind Ruth et al.

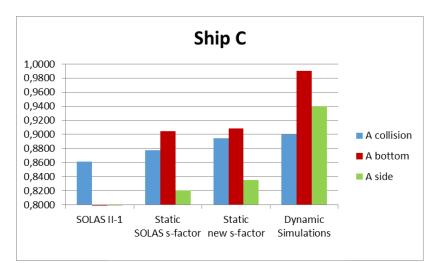
eSAFE summary ISSW 2019

eSAFE


SOLAS approach	New developments	
SOLAS permeabilities	New permeabilities for tanks	Basic input
SOLAS draughts	new draught distributions	data
SOLAS probabilities (damages of lesser extent)	U-factor for lower limit of collision breach	definition
SOLAS damage zones ("zonal approach")	Non-zonal approach collision bottom and side grounding	of hull breach
Stages and phases A-class boundaries	Agreed handling of A-class boundaries Numerical time-domain simulation CFD simulation	sequence of flooding
SOLAS S-factor		survivability
Attained subdivision index A		level of survival
eSAFE summary ISSW 2019		12 June 2019

- SOLAS s-factor includes parameters that are not directly related to the survivability of the ship
 - Maximum heel <7(15) degrees
 - Immersion of escape routes and emergency stations
- Additional floatability index defined
 - Aspects related to evacuation or LSA deployment disregarded
 - New floatability index_F to be seen in addition to SOLAS attained index
 - No k-factor (impact of heel on s-factor)
 - Capsize criterion (<20 degrees including external moments)
- The floatability index is better comparable with simulation results
- A new s-factor has been developed in a two step approach
 - Sensitivity study with regard to operational areas and different wave heights
 - Development of new s-factor for cruise ships based on simulation results

Comparison of static results and simulations


- Overall results of simulations show better survivability, but the same tendencies as for static calculations can be found
- Both ships behave differently in particular with regard to grounding
- Very interesting knowledge gained
 - The same weak areas of design have been found as in static calculations
 - The assumptions for static calculation may lead to very conservative results
 - The reason for failure in a specific case differ from static calculations, calm water simulations and simulations in wave
- Simulations have been proven to be a practical and better tool to estimate the safety after flooding events than SOLAS
- The gap between simulation results and static calculations has been significantly decreased

→ See paper G.Atzampos et al.

1,0000

0,9800 0,9600 0,9400

12 June 2019

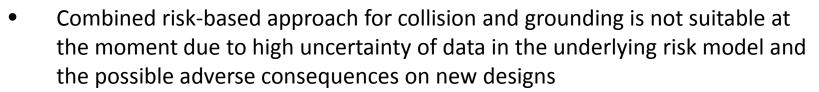
eSAFE

Ship A

A collision

A bottom

A side


Simulations

eSAFE

SOLAS approach	New developments	
SOLAS permeabilities	New permeabilities for tanks	Basic input
SOLAS draughts	new draught distributions	data
SOLAS probabilities (damages of lesser extent)	U-factor for lower limit of collision breach	definition
SOLAS damage zones ("zonal approach")	Non-zonal approach collision bottom and side grounding	of hull breach
Stages and phases A-class boundaries	Agreed handling of A-class boundaries Numerical time-domain simulation CFD simulation	sequence of flooding
SOLAS S-factor	Floatability assessment	
	New s-factor for cruise ships	survivability
	s-factor for operational areas	
Attained subdivision index A	Numerical time-domain simulation	level of survival
eSAFE summary ISSW 2019		12 June 2019

- Significant steps forward in understanding of flooding events
- Differences between SOLAS attained index and results from simulation cannot be completely explained
- We have now alternatives for floatability assessments with different focus:
 - Conservative A index calculation according to SOLAS as the basis
 - Non-zonal approach for collision, bottom and side grounding/contact
 - CFD simulations to get better understanding of individual damage cases and problems like transient flooding
 - Numerical time-domain simulations for assessing critical wave heights
 - Numerical time-domain simulations for overall assessment of survivability
- Common understanding about reliability and purpose of different methods and assumptions based on CFD validations
- CFD calculations give better knowledge about transient flooding and for specific situations where flows are complex

- Experience to be gained and shared in the future to understand the impact of design changes on the attained indices for collision, bottom grounding and side grounding/contact
- Comparison of simulations and static calculations show a higher safety level in the simulations. The gap between both approaches has been significantly reduced and simulation have been established as a suitable tool to investigate designs
- Knowledge and tools have been developed to enable provision of safety beyond SOLAS compliance
 - Robust method for collision and grounding
 - New s-factor made for cruise ships of different size
 - New approach for an overall floatability assessment supported by onboard data
 - First steps made to establish alternative methods to assess survivability after flooding

Next steps:

- Findings of eSAFE have been transferred into voluntary recommendations for CSSF members
- New EU funded research project started
 - Flooding Accident Response
 - Duration June 2019 May 2022

More information:

- eSAFE Executive Summary: <u>https://cssf.cruising.org/projects/</u>
- Proceedings of the 13th International Conference on the Stability of Ships and Ocean Vehicles, 16-21 September 2018, Kobe, Japan
- Project management
 - Odd Olufsen, DNVGL, <u>odd.olufsen@dnvgl.com</u>
 - Henning Luhmann, MEYER WERFT, <u>henning.luhmann@meyerwerft.de</u>