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Interpretation of results of numerical simulation

Arthur M. Reed, David Taylor Model Basin, Carderock Division, Naval Surface Warfare Center

ABSTRACT

Running a numerical simulation of motions in waves is in and of itself of little significance. The results of the
simulation—the motion time histories must be processed to produce statistical quantities if they are to be of
any practical use. Techniques for dealing with time histories of non-rare and rare events are presented. In the
realm of nonrare statistics, the techniques are further divided into statistics for the linear and nonlinear motion
regimes. The focus is on non-rare events, but predicting rare event statistics is discussed.

1. INTRODUCTION

The raw output from a time-domain simulation
of motions in random seas is of little use, unless the
simulation is lucky enough to encounter a rare
event—a stability failure that results in the
termination of the run. Thus, the simulations must be
planned based on the expected outcomes from the
simulations. This planning needs to establish
objectives as to what will be achieved by performing
the simulations.

Without belaboring the planning process, which
is worthy of a paper of its own, it is assumed that the
interest is in knowing the ‘“aver-age” motion
amplitudes, the maximum motions that a vessel
would be expected to experience, whether a vessel
will have exceeded a particular motion threshold in
given operational period in a given sea state or if it
could be expected to suffer a stability failure over its
lifetime. These are different questions, which are
approached using different statistical techniques.
This paper will discuss the methods by which
answers to both the non-rare and rare problems of
seakeeping and ship stability are de-rived from the
results of a time-domain simulation of motions in a
random seaway. For the most part, the problem of
setting of objectives and further planning will not be
discussed. whether a vessel will have exceeded a
particular motion threshold in given operational
period in a given sea state or if it could be expected
to suffer a stability failure over its lifetime. These are
different questions, which are approached using
different statistical techniques.
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The first of these questions requires statistical
analysis to determine the single significant
amplitude (SSA) motion amplitude and the
confidence intervals on the SSA motion—the non-
rare problem. The other questions, relating to
maximum motions and rare problem, will require
either an extremely long computer simulation
resulting, with a bit of luck in a stability failure, or
reliance on statistical extrapolation.

This paper will discuss the methods by which
answers to both the non-rare and rare problems of
seakeeping and ship stability are de-rived from the
results of a time-domain simulation of motions in a
random seaway. The problem of setting of objectives
and further planning will not be discussed.

2. THE NON-RARE PROBLEM

I n the case of simulations associated with a non-
rare problem, either the “average” motions that a
vessel will experience under a certain operational
condition (loading condition, speed and heading) in
a given sea state are computed, or the maximum
motions that a vessel will experience in a given
loading and operational condition in a specific sea
state are determined. Either way, it is necessary to
determine the ‘“average” motions—the single
significant amplitude (SSA) motions, so that further
decisions can be made regarding the statistical
approaches that will be employed.

The characterization of a vessels expected
maximum motions in a given sea state and condition
takes further statistical analysis relatively simple of
quite complex, depending on whether the motions
are in the linear or nonlinear regime.
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Figure 1: SSA Convergence of predicted roll motion as a function of run length based on synthetic data generated by LS3DoF;
left-hand figure as function of time, right-hand figure as a function of cycles. (Courtesy of Vadim Belenky)

The process begins with the computation of the
vessels motions for a minimal period of time,
typically 3 h'. The length of time necessary to
characterize the motions with a reasonable certainty
is discussed in Reed (2019). Reed (2019) shows that
at least 1000—1200 motion responses are necessary
— many more responses than recommended in some
other references that state that as few as 50 wave
encounters are adequate.

For a seaway with a modal period of around 10
s, 1000 wave encounters requires around 3 h of data.
However, it should be noted that a vessel does not
respond to every wave encounter in every mode of
motion, so that in fact it could require 25-30-percent
longer than the 3 h to achieve the ideal 1000-1200
responses. Figure 1 shows the convergence of the
SSA for roll as both a function of time and number
of wave encounters, using synthetic data generated
using LS6DoF (K. M. Weems and Belenky 2015).
Based on this data, it might even be concluded that 6
h of data and 2500 wave encounters are required for
convergence.

The motion computations can be a single run of
3 hs duration, or could be an ensemble of several
shorter runs totaling 3 h, say 9 20 min runs. If a
single run is employed, then care must be taken to
ensure that the autocovariance function of the
incident wave train remains well behaved
throughout the entire length of the simulation,
without any repeats—this requires a great number of
Fourier series terms if the seaway is represented by
a series with random phases, which is the most

! Unless otherwise noted, all times will be full-scale
durations.
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common way of generating seaway for
simulations. On the other hand, if a number of
shorter runs is used, to ensure that the runs are
statistically independent, unique wave seeds must be
used to initialize seaway for each run.

a

To compute the SSA motions and confidence
intervals for the motions of interest, the variance and
variance of the variance of the motion time histories
are computed (Belenky, Pipiras, and K. Weems
2015; ITTC 2017; Pipiras et al. 2018). Given the
variance and the variance of the variance, the
standard deviations of the motions are calculated as
the square root of the variance and the SSA is twice
the standard deviation. The confidence intervals
follow in a similar manner, based on the confidence
intervals of the variance.

If the only requirement is to predict the
“average” motions, the SSA of the motions, that a
vessel will experience while operating at a condition
in a given sea state, this completes the process. This
process must be repeated for every speed, heading to
the seas, loading condition and seaway—significant
wave height and modal period.

When it is necessary to predict the maxi-mum
motions that a vessel will experience in a given
condition in a particular seaway or to determine
whether a vessel will exceed a particular motion
limit or criteria, then additional statistical analysis is
required. Computationally and statistically both of
these questions are answered in a similar manner.
Assuring, with a reasonable confidence, that the
vessel does not exceed an operational limit only
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requires comparing the expected maximum motions
against the requirement to see if that limit will be
exceeded.

The statistics used to predict the maximum
expected motions depend on the magnitude of the
motions that are expected and the vessels hull form.
The magnitude of the motions and the hull form
determines whether the statistics are being analyzed
in the linear motion regime or the nonlinear motions
regime, and thus the statistical models that are
required.

The process in the linear regime

If the motions are in the linear region then the
problem is simple, while if the motions are in the
nonlinear regime, then statistical extrapolation must
be employed. Significantly greater simulated time is
required for predictions in the nonlinear regime. For
roll, the motion which this paper will focus on,
linearity depends on the GZ curve, linearity applies
as long as the initial range of the GZ curve relatively
constant slope—for virtually all vessels, it can be
reason-ably assumed that the motions are linear
through 25° or 30°. This is where the expected
motion amplitude comes into play, if the vessels
motions will not exceed the linear response regime
then it should not be necessary to simulate more than
the 3 h of motions used to determine the SSA
motions.

For motions in the linear regime the maximum
expected motions ae purely a function of the
standard deviation (o) of the motions, and the only
decision is whether to use ¢ or to be conservative and
use a “o” based on the upper confidence limit for the
motions. The key here is that ship motions are
assumed to be Gaussian and for narrow banded seas,
the motions are equally or even more narrow banded
due to the ship being a well-tuned filter for those
modes of motion for which there is a restoring force.
Thus the extremes of the process are Rayleigh, and
for linear statistics the extremes of the Rayleigh
distribution are directly related to the standard
deviation of the motions (Ochi and Motter 1973;
Ochi 1998).

For a given number of responses, there are
available tables that give the expected extreme
motions with a 95-percent confidence limit, i.e., 95-
percent of the responses will be less than this limit
(SNAME 1989, p. 91). The 95-percent non-
exceedance maximum amplitudes, ¥,,, are:
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n =100

P = 3.90,/m,

n=1000 9, =4.45/m,
where n is the number of cycles over which the limit
is to apply and m, is the variance of the motions
(\/m_o is the standard deviation). For motion limits,
n = 1000 is a good choice, as most storms only last
about 3 h, which corresponds to approximately 1000
wave encounters. SNAME (1989) provides no
source for the above $,, limits, but equation (6.19) of
Ochi (1998) provides a generalized formula for
computing the limit:

Pn =+ 2In(n/a) Jm,y (1)

where a if the fraction of cycles that are to
exceed the limit, and m, is as before. In the table
above a is 0.05 (=1 —0.95).

Equation (1) is sufficient to assess the expected
motions of a vessel based on its motion time history.
However, it can also be used to determine whether
the vessel meets a limiting criteria, and to determine
the acceptable SSA motions for a vessel to satisfy a
criteria.

As a totally fictitious example, if there were a
requirement that a cruise ship not exceed 25° of roll
in a storm, the formula ¥, = 4.45,/my could be
inverted to determine that the SSA based on the

computed motions should not exceed 11.2° (11.2° =
25°/2.225, where 2.225 = 4.45/2).

Based on the above, it obvious that it is easy to
assess the interpret the results of a simulation when
the motions are in the linear regime. How-ever,
when the motions are extreme, and thus outside the
linear regime the interpretation be-comes more
complex and requires the simulation of longer time
histories.

The process in the nonlinear regime

In the event of needing to characterize non-rare
motions in the nonlinear regime, requires the
development of the statistical distribution of the
motions that have been predicted so that tail of the
distribution can be evaluated to determine the
probability of a certain motion level being exceeded.
This is accomplished by fitting an appropriate
statistical distribution to a histogram of the predicted
motions, which in turn requires sufficient data for the
histogram to represent the tail with sufficient
fidelity.
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There is not a good definition of what is enough
data. The American Petroleum Institute (API) (API
2005) in their guidance for model testing states that
to characterize ship motions, 3 h of data should be
collected, and that to characterize extremes that at
least five times more data is required. Extending the
API guidance for model testing to simulations and
assuming that motions in the nonlinear regime are
extreme motions, that would say that a minimum of
15 h of motion data is required. K. M. Weems,
Belenky, and K. J. Spyrou (2018) have used 50 h of
data for their studies on statistical extrapolation
(obtained as 100 1/2 h data sets). However, they have
not performed any convergence studies to determine
minimum  data  requirement—they  obtain
satisfactory results with 50 h of data for their cases.
So it appears that somewhere between 15 and 50 h
of motions must be simulated for statistical
extrapolation, for each condition that includes
nonlinear motions. Yet other researchers have used
100 h of data (Glotzer et al. 2017)

As stated above, the statistical extrapolation
process requires fitting a statistical distribution to a
histogram of the time-history data from the
simulation. Knowledge of the appropriate statistical
distribution affects the amount of date required, as it
influences the number of parameters that need to be
determined to define the distribution for
extrapolation. If the motions are in the linear range,
then the normal distribution is appropriate and only
one parameter needs to be determined, the standard
deviation (as has been described above, statistical
extrapolation is not required if the data is Gaussian).
Figure 2 shows a histogram with a distribution fit
and illustrates statistical extrapolation.
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Figure 2: Tail of histogram fit with a GPD, showing
extrapolation. (Campbell et al. 2014)
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When the motions data is from the non-linear
range, then usually the most general of distributions,
the generalize Pareto distribution (GPD) (Pickands
1975; R. L. Smith 1987) must be employed. The
probability density function (pdf) of the GPD is
defined as:

1

f(g".p.a)(x) = é <1 -+ M>< 5 )

for x > p when £ >0, and p < x < p — o/§ when
& < 0; where & is the shape, p is the threshold (also
called the location in the literature) where GPD starts
to be applicable and o is the scale. For =0 the GPD
is the exponential distribution. If the tail of the
distribution is above the exponential distribution the
distribution has a “heavy tail; £ > 0 and is defined for
all z> 0. However, if the tail of the distribution lies
below the exponential distribution the distribution
has a “light tail; £ < 0 and 0 < z < —1/&. Figure 3
illustrates heavy and light tails relative to the
exponential distribution.

The threshold is more of a parameter for the
GPD, than a value describing the character of the
distribution. The GPD is used in particular to fit the
tail of distribution and is not appropriate for
approximating an entire distribution over its whole
range of support. Therefore, the choice of the
threshold is not particularly critical to the fit of the
distribution. If the threshold is chosen too small,
portions of the underling distribution that are
inappropriate to the describing the tail of the
distribution will be included, and if too large a
threshold is chosen, useful data for defining the tail
will be excluded. Thus, several choices for the
threshold should be used and the smallest one that
does not appear to affect the details of the tail
chosen, as it should minimize uncertainty.

pdf

Exponential tail 2=0

Heavy tail £>0

Light tail 2<0

For £<0, right bound u-&/c +

Figure 3: Heavy and light tails of a distribution relative to an
exponential distribution. (Belenky, K. Weems, Pipiras, et al.
2018)
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Figure 4: Peaks over threshold (POT) for a Roll Time
History, heavy horizontal lines are the threshold.
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Figure 5: Envelope peaks over threshold (EPOT) for a
Heave Time History (Campbell et al. 2014)

The scale and shape parameters are the ones that
need to be fitted to define the tail of the GPD
distribution. The need to accurately deter-mine these
parameters will have a significant influence on the
length of the simulation that must be run—the
amount of data required to fit these parameters with
reasonable accuracy.

There are a number of papers that describe fitting
a GPD to ship motions time history data. As it is
necessary to only fit the tail of the histogram, these
papers apply either one of two methods to exclude
the majority of the data, the data that makes up the
peak of the histogram. These methods are peaks over
threshold (POT) and envelop peaks over threshold
(EPOT)% In the EPOT approach, an envelope is
constructed connecting the peaks and reflected
troughs motion time history. The envelope can be
deter-mined by taking the Hilbert transform of the
time history (), or by brute force connecting the
peaks and reflected troughts with straight lines—
either is satisfactory for the purpose of determining

2 Note that this threshold in not the same threshold that is
used in the definition of the GPD.
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the peaks above the threshold. Figure 4 shows an
example of a POT using £10° as the threshold, and
Figure 5 shows an EPOT, for a different roll time
history, again using a 10° threshold. Either the POT
or EPOT approach is acceptable, though one must
use a statistically independent set of peaks, so the
clustering that results from the POT is less ideal than
the EPOT approach, as one must eliminate clustered
(adjacent) peaks, selecting only the maximum from
the cluster, when using the POT approach. All the
papers mentioned in the following discussion use
EPOT.

The earliest of the papers fitting a GPD to the
data is Campbell et al. (2014). T. C. Smith and
Zuzick (2015) (and T. C. Smith 2019) per-form a
formal validation of statistical extrapolation
methods for predicting the tail of the distributions for
roll, pitch and vertical and lateral acceleration. They
employ two methods to determine the confidence
intervals of their fit distribution, one that assumes a
normal distribution for the distribution of the scale
and shape parameters, and the other follows the
method used by Campbell et al. (2014), except that
they use the logarithm of the scale parameter to
ensure that it remains positive. More recently
Belenky, Glozter, et al. (2016) have used the GPD to
study the nature of the tail of the extreme roll
distribution.

As the tail of the roll distribution is fat (Belenky,
K. Weems, Vladas Pipiras, et al. 2018), it is possible
to make use of that fact to simplify the statistical
extrapolation of roll by using a power law—Pareto
distribution (PD) to fit the tail rather than the GPD.
The pdf of the PD is defined as:

o
_ OCXm)
X1+a

f(x,,,.oc) (X)

for X > Xm, where X, is the threshold and o is the
exponent (equivalent to 1/§ in the GPD). The
threshold of the PD serves the same function as the
threshold of the GPD, so the PD only has one
parameter, the exponent, that defines the tail,
reducing the length of record (amount of data)
needed to define the distribution, and rigor-ous
methods for determining the exponent (Beir-lant et
al. 2004; Dupuis and Victoria-Feser 2006; Mager
2015).
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Glotzer et al. (2017) have evaluated a number of
methods for fitting the confidence interval
(particularly the upper bound) for the exceedance
probability in the GPD framework: the normal
method, the lognormal method, the boundary
method, the bootstrap method, the profile
(likelihood) method, and the quantile method.
Glotzer, et al. use the maxim likelihood method for
estimators & and o, employing both direct and
quantile methods. They conclude that the quantile
method based on profile likelihood works best, and
the bootstrap method the poor-est. They also find
that the normal and lognormal methods are slightly
anticonservative.

In an effort to reduce uncertainty, Glotzer et al.
(2017) examine using knowledge of the expected
motion responses to further refine the fit.
particular, they take advantage of the fact that if the
roll exceeds a certain limit, that capsize will result,
and the fact that pitch is typically limited to 12°-15°,
based on the shape of the longitudinal GZ curve.
These limit dictate that the shape parameter of the
GPD will be negative, and determine its value.
Resulting in the need to fit only a single parameter,
the scale parameter, c.

In

3. THE RARE PROBLEM

It should be recognized that the simulation of a
single stability failure is of little statistical
significance—what if the vessel were to experience
the 1-in-100,000 wave in the first few minutes of the
simulation? And, in the case of predicting stability
failures such as capsize in the dead-ship condition,
one is seldom lucky enough to predict a failure in a
reasonable length simulation. Proving that this is a
truly rare stability failure in a random seaway, would
require the simulation of many thousands of
additional hours of motion histories. Therefore,
another approach to predicting the occurrence of
actual rare events.

The split-time method appears to be the most
feasible way of assessing stability failure. However,
it must be noted that the split-time method does not
rely on a single time history of motions, but rather
relies on repeated perturbations of a motion time
history to identify up-crossings at high enough rates
so as to result in a stability failure. This requires a
custom modification of a motion simulation code
and thus is in reality beyond the scope of the effort
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defined by the title of this paper—interpretation of
the results of a numerical simulation.

The split-time method was first reported in
Belenky, K. M. Weems, and Lin (2007) and
Belenky, K. M. Weems, and Lin (2008), where roll
at zero speed in beam seas was analyzed. The
essential idea behind the split-time method is that of
breaking the motion responses into nonrare and a
rare portions. The motions are predicted in the usual
manner until the predicted motion amplitude
exceeds a pre-established threshold. At the point the
simulation is halted and the state recorded. Then the
motion predictions are continued for a a few cycles
to oscillating about its upright equilibrium position
or proceeds to a stability failure. The motion
predictions are then repeated from the state where
the threshold was exceeded with the roll rate at the
moment of exceedance perturbed upward or
downward to identify the critical roll rate at up-
crossing that defines the boundary between stable
motion equilibrium and stability failure. Figure 6
illustrates this process.

A series of the “distances” of the roll rate from
that dividing rate is used as a metric to de-fine the
exceedance rate, accumulated over an extended
period of time—50 to 100 h, is fitted with a GPD to
determine the exceedance rate. This process must be
repeated multiple times to assure that the results are
statistically consistent.

Threshold
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Figure 6: Split-time method at zero speed in beam seas,
showing extrapolations with different roll rates at the
threshold—threshold is constant. (Belenky, K. Spyrou, et al.
2012)
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Figure 7: Split-time method at speed in bow quartering seas,
showing extrapolations with different roll rates at the
threshold—threshold varies with time (as a function of
attitude on waves). (Belenky, K. Spyrou, et al. 2012)

The problem described above is idealized, in that
the righting-arm curve of a vessel in beam seas is
essentially constant—Ilike that of a vessel in calm
water. In bow or stern quartering seas, the righting-
arm curve becomes time varying, complicating the
problem even further. The extension of the split-time
method to an unsteady righting arm curve is
illustrated in Figure 7.

Belenky, K. M. Weems, Lin, and K. Spyrou
(2010) extended their split-time method model to
forward speed in bow quartering seas to deal with
this more complicated problem, of a time varying
righting-arm curve and began to discuss the
application of the split-time method to surf riding
and broaching, Belenky, K. Spyrou, et al. (2012)
further extended their bow quartering seas and surf-
riding analyses. Belenky, Pipiras, and K. M. Weems
(2013) extended split-time method to pure loss of
stability in waves, which requires a rigorous
assessment of the instantaneous roll restoring force
in waves. All of the above work is summarized in
Belenky, K. Weems, and Lin (2016).

K. M. Weems and Belenky (2018) and K. M.
Weems, Belenky, and K. J. Spyrou (2018) present a
validation of the split-time method using a simplified
model for predicting the motions, this simplified
model allows the simulation of hundreds of
thousands to millions of full-scale hours of motions
in extreme seas in a few days. Each of these extended
runs produces a few hundred stability failures,
allowing the calculation of exceedance rates against
which the results of the split-time method
exceedance rates can be compared. Belenky, K.
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Weems, Pipiras, et al. (2018) use this data to study
the tail of the distributions of the metric used to
determine the critical roll rate.

4. SUMMARY

The characterization of ship motions in the linear
and nonlinear regimes is described. In the linear
regime, the extremes can be easily characterized
using the standard deviation of the motions. In the
nonlinear regime, an extended simulation length is
required for a reasonable pre-diction of the tail of the
statistical distribution to be determined—this tail in
turn can be evaluated to provide estimates of the
probability of extreme motions. The Generalized
Pareto Distribution and Pareto Distribution are used
for these fits. To facilitate the fitting of the tail to a
histogram of the motion data a peaks over threshold
(POT) or preferably an envelope peaks over
threshold (EPOT) technique is employed to
eliminate the smaller motions from the histogram.

It is not reasonable to directly observe stability
failures using a time domain ship motion simulation
tool. Therefore advanced techniques such as the
split-time method must be utilized. A high-level over
view of the split-time method is provided with many
references to the implementation of the method.
Even with the use of the split-time method, the
prediction of exceedance rates for stability failures is
not trivial.
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