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ABSTRACT 

This paper focuses on methods of processing ship roll decay data. Analysis is performed on  Computational 
Fluid Dynamics (CFD) results for the Office of Naval Researh Tumblehome (ONRTH) configuration. CFD 
prediction is compared to experimental measurments of a 1/49 scale model at 9.3° roll amplitude.  Traditional 
log decrement method is revisted from a more formal point of view of multi-dimensional linear regression. 
Calculation of confidence and prediction intervals are caried out for uncertainty assessment. As ONRTH 
configurion is known for its geometic nonlinearity, outlier analysis with Cook’s distances and thier influence 
on uncertainty is described. The paper also describes a nonlinear regression with a decaying cosine function 
that is fitted to the data and its uncertainty is evaluated. Splitting data in two subsets is considered as a way to 
account for geometric nonlinearity. 
Keywords: Roll decay, Uncertainty Quantification 
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1. INTRODUCTION 
A roll decay test remains a popular way to 

estimate roll damping, e.g. ITTC (2021) 
recommended procedure 7.5.-02-07-04.5. Large 
uncertainty in experimental data is an indication of 
complex physics of roll damping as also described 
for three hull forms in Park et al. (2009). One of the 
major contributors to this uncertainty is the data 
processing.  

Calculation of ship motions (both in frequency- 
and time-domain) is a main consumer of roll 
damping data. Accuracy of the roll motion 
calculation near synchronos or parametric resonance 
conditions may be signficantly affected by the 
uncertainty of roll damping. Propagating the roll 
damping uncertainity through dynamical system 
may lead to more relaible evaluation of ship 
motions. 

The principal idea of uncertainty propagation 
seems to be straight forward. The roll damping 
coefficients are considered as random variables. 
Their statistical properties should be found from the 
uncertainty analysis. Then the dynamical system can 
be considered as a deterministic function of random 
variables, leading to a distribution of the responce. 

Recently some studies were carried out for  
reduced-order modeling (ROM) of ship motions 
within the multi-fidelity framework (e.g. Pipras, et 
al. 2022, Levine et al. 2022). It became clear that 
uncertainty quantification of reduced order models 
is essential for gaining confidene in application of 
the multi-fidelity framework (see also a review by 
Weems and Sapsis 2022 to be presented at this 
workship). Uncertainty is seen as ”price” one pays 
for using ROM instead of high-fidelity mathematical 
model.  

Essentially, polynomial representation of roll 
damping is a ROM. Choice of using a quardatic, 
quadratic plus cubic or an equivalent linear damping 
model depends on a problem in hand. For example, 
if the objective is an estimation of standard deviation 
of roll motions with time-domian simulation, the 
nonlinearity of roll damping may not be essential (as 
it may be averaged out). Then, one could prefer a 
model with minimum uncertainty. When the 
objective is large roll angle excursion or capsizing 
simulation, the choise may be different. 

Different damping models and different fitting 
techniques may differ in uncertainty. E.g. 
application of the curve fitting technique (Park et al. 
2016 and 2017) demonstrates less uncertainty, 
compared to traditional log decrement method, but 
produces only a linearized roll damping coefficient.  

This paper revisits the curve fitting technique 
(Park et al. 2009, 2016, and 2017) as well as the 
traditional logarithmic decrement approach. The 
focus of this study, however, is not a comparison, but 
a review of assumptions and an attempt for a more 
formal uncertainty analysis of roll decay data. 

Many factors exist in a physical roll decay 
experiment that cannot be explicitly identified and 
cannot include the uncertainty, such as the influence 
of wave reflection or the manual initiation of roll 
decay. For consistant data analysis uncertainty, roll 
decay results of numerical simulations are 
considered. 

ONR tumblehome topside configuration 
(Bishop et al. 2005) is considered as a ship model for 
the current study. This configuration which is known 
for its geometric nonlinearity and reflected in the 
dependence of natural roll frequency to amplitude, 
offers a proper “stress test” to standard assumptions 
of roll decay analysis. 

2. CFD ANALYSIS OF ROLL DECAY 

Numerical Methodology 
Star-CCM+, which is a commercial CFD 

simulation software developed by Siemens Digital 
Software, is employed to perform roll decay 
modeling. Navier-Stokes equations in the software 
are solved with finite-volume method, where surface 
and volume integrals representing convective and 
diffusive fluxes are approximated with the mid-point 
rule. The segregated solution of the velocity-
pressure coupling problem is obtained with a Semi-
Implicit Method for Pressure Linked Equations 
(SIMPLE) algorithm. An implicit second-order 
three-level scheme is adopted for time integration. 
The free-surface is modeled by the Volume of Fluid 
(VOF) method with a High- Resolution Interface 
Capturing (HRIC) scheme for tracking the sharp 
interface between water and air. Anisotropic 
refinement allows building efficient grids for the 
HRIC scheme.  

Ship motions in Star-CCM+ can be modeled 
with the overset grid method, which allows multiple 
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grids within one computational background domain 
to overlap arbitrarily. Rigid body motions are 
handled by the Dynamic Fluid Body Interaction 
(DFBI) method. Both 6 degrees of freedom (6DoF) 
motions and motions with constrained modes can be 
modeled.  

CFD Setup 
Figure 1 is the ONRTH model geometry for this 

study. It is a fully appended 1/49 scale model, Model 
5613, equipped with a skeg, bilge keels, twin 
rudders, shafts and two 4-bladed propellers mounted 
with shaft brackets. Except the twin propellers, all 
appendages are considered in this analysis. Table 1 
gives the model particulars extracted from the 
SIMMAN2020 Workshop websitesite on 
Verification and Validation of Ship Maneuvering 
Simulation Methods, http://www.simman2019.kr.  

 
Figure 1: ONRTH model. 

Table 1: Particulars for model scale ONRTH.   

Main Particulars Model Scale 
Displacement, ∆ (kg) 72.6 
Waterline Length, L (m) 3.147 
Waterline Beam, B (m) 0.384 
Draft, T (m) 0.112 
Wetted Surface Area, S (m2) 1.5 
LCB (m aft of FP) 1.625 
VCG (m from keel) 0.156 
Roll Radius of Gyration, kxx/B 0.344 
Pitch Radius of Gyration, kyy/L 0.246 
Yaw Radius of Gyration, kzz/L 0.246 
Propeller Diameter, Dp (m) 0.1066 
Propeller Shaft Angle (deg) 5 
 

Unsteady Reynolds-Averaged Navier-Stokes 
(URANS) simulation of the roll decay is performed 
in Star-CCM+, with two equation SST k-ω model as 
the turbulence model. Figure 2 is a view of 
computational grid generated for this simulation in 
calm water condition. Hexahedral-dominant 
unstructured-grid topology with prism layers for 

boundary layer is employed to discretize the 
computational domain. Two regions including 
background and ship are created, with ship defined 
as overset region to allow relative motions of the 
ship with respect to the background region. Two grid 
resolutions with 5.7×106 (Grid1) and 23.7×106 
(Grid2) cells are applied for a limited grid sensitivity 
analysis, where the base size of Grid2 cell is 0.125 
of Grid1 (0.5 in each principal direction). 

 

 
Figure 2: Computational grid for calm water roll 
decay simulation in Star-CCM+. 

CFD Validation 
The CFD results of the roll decay simulation is 

validated against the experimental data collected at 
the University of Iowa Wave Basin Facility, IIHR. 
This data set is labeled EFD in this paper. The origin 
of the ship-fixed coordinate system defined in Star-
CCM+ is at the center of gravity with x+ towards 
bow, y+ towards port, and z+ up.  

The CFD prediction of roll decay is performed 
for Froude number, Fr = 0. The model is free in 
6DoF and released with an initial roll angle of 9.3o, 
which matches the model test. Figure 3 compares the 
time history of predicted and measured roll motion, 
φ. Grid1 resolution is selected for this comparison. 
A reasonable agreement is obtained between the 
CFD and model test. 

 
Figure 3: Time history of roll angle at Fr = 0.  

The predicted roll motion is further evaluated by 
calculating the roll decay coefficient (ηj) and peak 
period (Tj) defined as follows: 

𝜂𝜂𝑗𝑗 =
1
𝜋𝜋
𝑙𝑙𝑙𝑙 �

𝑎𝑎𝑗𝑗
𝑎𝑎𝑗𝑗+1

� , 𝜖𝜖𝑗𝑗 =
1
2 �
𝑎𝑎𝑗𝑗 + 𝑎𝑎𝑗𝑗+1� (1) 

http://www.simman2019.kr/
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𝑇𝑇𝑗𝑗 = 𝑡𝑡𝑗𝑗+2 − 𝑡𝑡𝑗𝑗 (2) 
where, 𝑎𝑎𝑗𝑗 is the absolute peak roll angle at time 𝑡𝑡𝑗𝑗,  
and index j is an integer number that represents the 
sequence of roll peaks. These two parameters are 
plotted in Figure 4 for both CFD and experiment. 
Except the small roll angles (ϵj < 2), both the roll 
decay coefficient and peak period are accurately 
predicted by 6DoF CFD. The non-linear trends seen 
in EFD for both parameters at ϵj < 2  are likely 
related to the uncertainty in the measurement for low 
amplitude roll motions, waves in the basin produced 
by the roll initiation, and electronic noise in the roll 
instrumentation.  

 

 
Figure 4: Roll decay coefficient and peak period at Fr =  0. 

 

 
Figure 5: Sensitivity analysis of roll decay prediction to 
the spatial and temporal resolutions. 

The sensitivity of the roll decay prediction to the 
spatial and temporal resolutions is depicted in Figure 
5, where an independence of computed roll motion 
to the grid spacing and time step size is observed. 

The analysis is performed for the CFD predicted roll 
decay with initial roll angles of 6°, 9.3° and 12°. 

3. LOG-DECREMENT METHOD 

Background and Assumptions 
The logarithmic decrement method is one of the 

basic technique adopted by the ship hydrodynamic 
community for modeling the roll damping. The data 
are presented as  

𝜑𝜑i = 1
2

(𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑖𝑖+1)  (3) 

𝐿𝐿𝐿𝐿𝑖𝑖 = 𝑎𝑎𝑖𝑖−𝑎𝑎𝑖𝑖+1
𝜋𝜋𝜑𝜑𝑖𝑖

     (4) 

where ai are “amplitudes”, i.e. absolute values of 
peaks and LD is a logarithmic decrement, reflecting 
an energy lost with each semi-period of oscillation. 

Being a classical one, the log-decrement method 
has originated from the solution of homogenous 
linear differential equation from Lloyd (1998) and 
Myklestad (1956): 
𝜑𝜑(𝑡𝑡) = 𝑎𝑎exp (−𝛿𝛿𝑡𝑡)cos(𝜔𝜔1𝑡𝑡 + 𝜃𝜃)  (5) 

where amplitude a and phase 𝜃𝜃 are arbitrary 
constants, depending on initial conditions, 𝜔𝜔1 is a 
frequency of free damped oscillation, and 𝛿𝛿 is a 
dimensional damping coefficient. If the linear case 
is completely applicable, the LD-value will be 
constant. 

 
Figure 6: Roll decrement versus amplitude. 

From Figure 6, the data do not show a constant 
behavior, due to a well-known fact that the roll 
damping depends on the roll amplitude. The decay 
coefficient by the log-decrement method is plotted 
as a function of the average absolute values of two 
sequential peaks in the time series. The peaks are a 
function of time; consequently, the data are plotted 
as reverse time. That is, the small peaks occur later 
in time, while the larger peaks exist earlier in time. 
Common practice recommended in SDC 
8/WP.4/Add.2 is to approximate roll decay data with 
a quadratic polynomial  
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𝐹𝐹(𝜑𝜑) = 𝑐𝑐0 + 𝑐𝑐1𝜑𝜑 + 𝑐𝑐2𝜑𝜑2 (6) 
where c0, c1 and c2 are the decay extinction 
coefficients.  

For the time domain simulations, the 
dependence of roll damping on roll amplitude is 
modelled as a cubic function of roll rate: 
𝑓𝑓𝑑𝑑(�̇�𝜑) = 2𝛿𝛿�̇�𝜑 + 𝛽𝛽|�̇�𝜑|�̇�𝜑 + 𝛾𝛾�̇�𝜑3 (7) 

where �̇�𝜑 is roll rate and (Bulian 2004) and 
𝛿𝛿 = 2𝑐𝑐0𝜔𝜔1 (8) 

𝛽𝛽 =
3𝜋𝜋
4
𝑐𝑐1 (9) 

𝛾𝛾 =
8

3𝜔𝜔1
𝑐𝑐2 (10) 

These coefficients are found with a multi-
dimensional linear regression.  

Linear Regression 
The logarithmic decrement (in a vector form) is 

presented as  

𝐿𝐿𝐿𝐿�����⃗ = �⃗�𝑦 = 𝐗𝐗 ∙ 𝑐𝑐 + 𝜀𝜀 (11) 

where �⃗�𝑦 is usually referred as response vector or 
vector of dependence variables, c⃗� is a vecor of 
parameters, the ”hat” �  symbol indicates that the 
value is an estimate being a random number, and 𝐗𝐗 
is a matrix of predictors defined as 
𝑋𝑋𝑖𝑖1 = 1,𝑋𝑋𝑖𝑖2 = 𝜑𝜑𝑖𝑖 ,  𝑋𝑋𝑖𝑖2 = (𝜑𝜑𝑖𝑖)2, 
 𝑦𝑦𝑖𝑖 = 𝐿𝐿𝐿𝐿𝑖𝑖 

(12) 

The vector 𝜀𝜀 is called a vector of disturbance 
terms, error variables, or residuals and is defined as 
a difference between a vector of predicted variables 
�⃗�𝑦 and predicted values �⃗�𝑦�, (𝜀𝜀 = �⃗�𝑦 − �⃗�𝑦�). 

This regression is referred as linear since the 
relationship between a scalar response (dependent 
variable) and vector of regressors (independent 
variables, predictors) is linear. The regression 
equation for a given data set can be presented in the 
following form: 

 �⃗�𝑦� = 𝐗𝐗 ∙ 𝑐𝑐   (13) 

The estimates of vector 𝑐𝑐 is caluclated as:  

𝑐𝑐 = �𝐗𝐗𝑻𝑻𝐗𝐗�−1𝐗𝐗𝑻𝑻�⃗�𝑦  (14) 

The elements of the parameter vector are 
interpreted as the partial derivatives of the 
dependent variable with respect to the various 
independent variables, in which the matrix 
expression �𝐗𝐗𝐓𝐓𝐗𝐗�−1𝐗𝐗𝐓𝐓 is a result of the mean square 

fit (i.e. differentiating the residuals by the 
coefficients and setting them to zero in order to 
minimize the error terms). From the vector of 
residuals, a standard residual error is estimates as: 

𝜎𝜎�2 =
1

𝑙𝑙 − 𝑝𝑝
𝜀𝜀𝜀𝜀𝑇𝑇 (15) 

where n is the number of dependent variables and p 
is the number of predictors.  

In addition to standard residual error, the 
coefficient of determination of variance explained, 
R2 can evaluate a model. This coefficient varies 
between 0 to 1, where 1 means 100 % fit of model to 
the data set, and is defined as follows: 

𝑅𝑅2 =  �𝑦𝑦�⃗
�−𝑚𝑚�𝑦𝑦�

𝑇𝑇
∙�𝑦𝑦�⃗�−𝑚𝑚�𝑦𝑦�

�𝑦𝑦�⃗ −𝑚𝑚�𝑦𝑦�
𝑇𝑇
∙�𝑦𝑦�⃗ −𝑚𝑚�𝑦𝑦�

  (16) 

where 𝑚𝑚�𝑦𝑦 is a mean value estimate of �⃗�𝑦. 

Uncertainty Quantification of Linear Regression 
The main underlying probabilistic assumption of 

regression is normal distribution of residuals. This 
assumption is that the regression model fits data well 
and deviations are caused by a large number of 
reasons, so normality of residuals follows from the 
central limit theorem.  

Like any other statistical estimates, the estimates 
of parameters 𝑐𝑐 are random quantities. As they are 
result of averaging, they have Student’s t-
distribution like any other average of normal 
variable (which are the residuals in this case). The 
uncertainty of i-th parameter is characterized with a 
confidence interval with the following boundaries: 

�̂�𝑐𝑖𝑖
𝑢𝑢𝑢𝑢,𝑙𝑙𝑙𝑙𝑙𝑙 = �̂�𝑐𝑖𝑖 ± 𝑡𝑡𝑛𝑛−𝑢𝑢

𝛼𝛼 2⁄ 𝜎𝜎��(𝐗𝐗𝑻𝑻𝐗𝐗)𝑖𝑖𝑖𝑖−1 (17) 

where α is a complimentary to a given confidence 
probability (i.e. 0.05 for the confidence probability 
of 0.95) and 𝑡𝑡𝑛𝑛−𝑢𝑢

𝛼𝛼 2⁄  is the α/2 quantile of Student’s t-
distribution. For the large number of points (25 and 
more), Student’s t-distribution is not really 
distinguishable from normal and assumption of 
normality of residuals can be relaxed due to the 
Central Limit Theorem. 

As the parameters of c⃗� are random numbers, the 
predicted values �⃗�𝑦� are also random numbers since 
they have resulted from the regression Equation 
(11), which is a deterministic function of random 
arguments. Thus, its statistical uncertainty (i.e. 
caused by the finite volume of data) should be 
quantified with the known distribution of the 
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parameters of the c⃗� vector. Since the regression 
Equation (11) is linear, the predicted values also 
follow the Student’s t-distribution and the 
boundaries of confidence interval are expressed as: 

𝑦𝑦�𝑖𝑖
𝑢𝑢,𝑙𝑙 = 𝑦𝑦�𝑖𝑖 ± 𝑡𝑡𝑛𝑛−𝑢𝑢

𝛼𝛼 2⁄ 𝜎𝜎���⃗�𝑥𝑖𝑖𝑇𝑇(𝐗𝐗𝐓𝐓𝐗𝐗)−1�⃗�𝑥𝑖𝑖 (18) 

where �⃗�𝑥𝑖𝑖 is the i-th row of matrix X. 
The other type of uncertainty, associated with 

regression, is the prediction uncertainty, quantified 
with the prediction interval: 

𝑦𝑦�𝑖𝑖
𝑢𝑢1,𝑙𝑙1

= 𝑦𝑦�𝑖𝑖 ± 𝑡𝑡𝑛𝑛−𝑢𝑢
𝛼𝛼 2⁄ 𝜎𝜎��1 + �⃗�𝑥𝑖𝑖𝑇𝑇(𝐗𝐗𝐓𝐓𝐗𝐗)−1�⃗�𝑥𝑖𝑖 

(19) 

As its name suggests, the prediction interval 
quantifies uncertainty of prediction, i.e. applying the 
regression formula to estimate a “new” value of y. 
Its interpretation in terms of propagation of roll 
decay uncertainty though a dynamical system is not 
clear at the moment. Further study includes both 
statistical and prediction uncertainty. 

Geometrical Nonlinearity  
As already mentioned, the ONRTH hull is 

known for its geometric nonlinearity due to its 
topside configuration. This nonlinearity is reflected 
in a shape of its backbone curve in Figure 7. While 
for a more conventional hull form, deviation of the 
backbone curve from the vertical line is expected to 
be significant around 10 degrees, Figure 7 
demonstrates practically no vertical portion of the 
backbone curve for the ONRTH, as its waterplane 
changes significantly even for small roll angles.  

 
Figure 7: Backbone curve. 

Traditional technique for the roll decay test 
includes implicit assumption for the independence of 
amplitude and period. This could be a reason for 
excluding the first peak in the record. Choosing the 
initial condition slightly above the independence 
range may be helpful to obtain a “cleaner” record as 

the initial disturbance may dissipate when the model 
enters the range of independence.  

Analysis of Influential Values 
The range of indolence between amplitude and 

period does not exist for the ONRTH. At the same 
time CFD simulation may not have those “initial 
disturbances” that may present in a physical 
experiment. The large peaks may have a large 
influence on regression results. 

In order to estimate the influence of a data point 
in a regression analysis, Cook’s distance (Cook’s D) 
is employed, in which the a fitted model without a 
selected data point (i) is compared with a model 
based on all data points. As a result, a total of n 
checks will be made. The Cook’ D of i-th dependent 
variable can be calculated with: 

𝐿𝐿𝑖𝑖 =
(𝜀𝜀𝑖𝑖)2

𝑝𝑝𝜎𝜎𝑟𝑟2
ℎ𝑖𝑖𝑖𝑖

(1 − ℎ𝑖𝑖𝑖𝑖)2
 (20) 

where hii is the i-th diagonal element of project 
(influence) matrix 𝑯𝑯. This matrix maps the vector 
of dependent variables (�⃗�𝑦) to the vector of fitted 
values  (�⃗�𝑦�), and identifies the influence of each 
response value on each fitted value. Similarly, the 
diagonal elements of the projection matrix called 
leverages describe the influence of each response 
value on the fitted value for that same observation. 
The project matric can be obtained from: 

𝑯𝑯 = 𝑿𝑿�𝑿𝑿𝑻𝑻𝑿𝑿�−1𝑿𝑿𝑻𝑻 (21) 

Data points with large residuals (outliers) or high 
leverage could distort a fitted model. Cook’s 
Distance, which essentially measures the effect of 
deleting a data point is evaluated in the current study 
to exclude the outliers from the model. The Cook 
Distance Di is considered large if it is greater than 
three times of the mean value of elements of vector 
𝐿𝐿��⃗  (𝐿𝐿𝑖𝑖 > 3𝔼𝔼(𝐿𝐿��⃗ )).   

From the time history of roll angle with 32 roll 
peaks as independet variables, the degrees of 
freedom for this time series becomes 29 (32 
(variables) – 3 (parameters)). The elements of 
parameter vector c⃗� obtained from Equation (14) are 
summeried in Table 2 for the three roll decay 
simulations. A large variation of these elements with 
respect to the initial roll angle is observed, which 
could be an indication for dependency of roll 
damping coefficient to this parameter.  
Table 2 Elements of �̂�𝐜.  
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a (deg) c0 (×103) c1 (×103) c2 (×103) 
6 4.32 1.4 -0.20 
9.3 2.78 1.8 -0.92 
12 -0.85 2.1 -1.18 

From the elements of vector 𝑐𝑐, the fitted model 
is constructed. The boundaries of confidence and 
prediction intervals of the parameter vector are 
calculated next and fitted model and boundaries are 
plotted against data in Figure 8. The model for the 6o 
initial angle is close to a linear trend, while it is non-
linear for the higher initial angles. The prediction 
interval is fairly wide and the intercept of the lower 
boundary is negative for all three cases, which is not 
physcial. To quantfy the uncertainty of the model, 
𝜎𝜎�2 and R2 are also calculated and summerized in 
Table 3. The residual error for three case is 
comparable between three cases, but R2 increases as 
the initial roll angle goes up, which is an indication 
for a closer fit of the model to the data. 

 

 

 

 

 
Figure 8: Fitted model, conficence interval and prediction 
interal of logarithmic decrenet with initial roll angle of  6° 
(top), 9.3° (middle) and 12° (bottom).  

 
Table 3 Standard residual error and R2 of the fitted model 

a (deg) 𝝈𝝈�𝟐𝟐 R2 

6 8.118E-03 0.75 
9.3 7.611E-03 0.865 
12 8.221E-04 0.89 

Cook’s Distance method identifies potential 
outliers and improve the fitted model. This process 
is performed three times and for every set of points 
that are removed, the model is refitted to the new 
dataset and confidence and prediction intervals are 
recalculated. Figure 9 depicts the refitted model and 
coresponding intervals for the first (top row), second 
(middle row) and third (bottom) outlier removal and 
initial roll angle of 9.3o. One point per step is 
identified as an outlier. The intercept of lower 
prediction interval turns to a positive value after 
removing the second outlier and the refitted model 
tends to matches closer to the data points. The slope 
of the model approaches to zero through this 
process. R2 of the fitted model is calculated at each 
step to determine the cut off point for the outlier 
removal process. Table 4 summerizes the R2 value of 
the refitted model for all three initial angles, which 
increases compared to the original model for the first 
and second steps, but it does not noticably impove 
for the third step. This implies that the R2 could be a 
criterion for identifying the number of steps required 
to improve a model.  

Table 4: variance of fitted model. 

    a (deg) 
R2 6 9.3 12 

Original data 0.75 0.86 0.89 
First point-removal 0.78 0.91 0.92 
Second point removal 0.86 0.93 0.94 
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Third point removal 0.77 0.87 0.89 
 

 

 

 

(a) First point-removal 

 

(b) Second point-removal 

 

(c) Third point-removal 
Figure 9: Cook’s Distance method for roll decay data with 
initial roll angle of 9.3°. 

Table 5 compares the elements of vector c⃗� 
resulting from the original data set and the second 
point-removal step. Significant difference between 
the parameters of two data sets is observed. A strong 
dependency of the model coefficients to the initial 
roll angle is also seen for the refitted model, which 
is consistent with the original model. 
Table 5: Elements of vector �̂�𝐜 calculated from the original 
data points and the second point-removal step. 

 a (deg) c0 (×103) c1 (×103) c2 (×103) 

O
rig

in
al

 
da

ta
 se

t 6 4.32 1.4 -0.2 
9.3 2.78 1.8 -0.92 
12       -0.84 2.1 -1.18 

Se
co

nd
 

po
in

t-
 6 1.1    -0.44 4.69 

9.3 1.7     -2.65 4.31 
12 1.4 0.91 3.34 

4. EXPONENTIAL COSINE FUNCTION 
For experimental data, the data may be fitted 

directly with Equation (5). A more general form 
appropriate for experimental data that includes offset 
is given by the following equation 
𝜑𝜑 = 𝑎𝑎𝑎𝑎𝑥𝑥𝑝𝑝(−𝑏𝑏𝑡𝑡) cos(2𝜋𝜋𝑡𝑡 𝑐𝑐⁄ + 𝑑𝑑) + 𝑎𝑎  (22) 

where a is the amplitude, d the phase shift, and e the 
offset.  The period T and the decay coefficient η are 
defined as 
𝑇𝑇 = 𝑐𝑐                                                             (23) 
𝜂𝜂 = 𝑏𝑏𝑐𝑐 (2𝜋𝜋)⁄                                                (24) 

Single Data Set 
The curve fit of the time series for the CFD and 

experimental results at 9.3°amplitdes is indicated in 
Figure 10 and 11. The duration of each run is 26 s. 
The results are presented as  time series of roll angle 
and and residual  (difference between the curve fit 
and the data). The offset, e, is non-zero for both the 
CFD and experimental results. The 95 % prediction 
limit for the experimental data is about half that of 
the CFD. The data trends are similar. That is, the 
curve fit under predicts the measured roll amplitude 
of 9.3°. The manual initiation of the roll amplitude 
may be the cause in the difference between the 
predicted and measured roll amplitude. A similar 
result was observed in Park et al. (2009). 

Split Data Set 
The deviation from the curve fit at the smaller 

roll angles is evident in the plots of Figure 10 and 11. 
Similar trends are observed for the two other initial 
roll angles in CFD (not shown here). The curve fit of 
the time series is improved by splitting the series in 
two parts at the nearest peak after 6 s. The results are 
in Figure 12 through Figure 15 for amplitudes of 6° 
through 12°, respectively. In all cases, the curve-
fitted amplitude in the first 6 s is nearer the actual 
intitial CFD amplitude and the measured amplitude 
for 9.3°. The best curve-fit is at 6 s with a curve fit 
amplitue of 9.316° ±0.081° (±0.87 %) or a difference 
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of 0.17 % from the measured amplitude of 9.3°. The 
difference is smaller than the uncertainty estimate. 
The amplitude comparison is summarized in Table 
6.  

 
(a) 

 
(b) 

Figure 10: Time series of (a) roll angle and (b) residual at 
9.3° with all CFD data. 

 
(a) 

 
(b) 

Figure 11: Time series of (a) roll angle and (b) residual at 
9.3° with all experimental data. 

 
(a) 

 
(b) 

Figure 12: Time series of (a) roll angle and (b) residual at 6° 
for split CFD data. 
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(a) 

 
(b) 

Figure 13: Time series of (a) roll angle and (b) residual at 
9.3° for split CFD data. 

 
(a) 

 
(b) 

Figure 14: Time series of (a) roll angle and (b) residual at 
9.3° for split experimental data. 

 
(a) 

 
(b) 

Figure 15: Time series of (a) roll angle and (b) residual at 12° 
for split CFD data.. 

Table 6: Comparison of curve-fit amplitude with the initial 
from experiment and CFD. 

Source a (deg) 26 s 6 s 
CFD 6.0 5.066 ±0.059 6.070 ±0.058 
CFD 9.3 8.311 ±0.70 9.48 ±0.13 
EFD 9.3 8.667 ±0.073 9.316 ±0.081 
CFD 12.0 11.36 ±0.18 12.27 ±0.20 

 
The results from curve fit for the exponential 

cosine function are summarized in Figure 16 and 17 
for the roll period and decay coefficient, 
respectively.  For all data and the first 6 s, both the 
decay coefficient and period increase linearly for the 
CFD data.  The experimental data are outliers 
relative to the CFD data.  For the data after 6 s, both 
the period and decay coefficient are nealy constant 
and signficantly less than the results for all data and 
the first 6 s. The trends are similar to those of Park 
et al. (2009, 2016, and 2017) and may be related to 
geometric nonlinearity manifested in the backbone 
curve in Figure 7. 
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Figure 16: ONRTH roll period from exponential cosine 
function 

 
Figure 17: ONRTH roll decay coefficient from exponential 
cosine function 

5. SUMMARY AND CONCLUSIONS 
Results for Model 5613, 1/49 scale of the ONR 

Tumblehome were produced by a URANS 
simulation for roll decay at three amplitudes, 6.0°, 
9.3°, and 12.0°. The CFD were compared to model 
experiments at 9.3° roll amplitude. The roll decay 
coefficient was then computed from the data by two 
methods: exponential cosine function from Equation 
(22), with nonlinear regression and log-decrement 
from Equation (1) with linear regression.  

Basic formulae for contstrunction of both 
statistical and prediction intervals were reveiwed for 
log decrement method. No such review is yet 
avialable for exponential cosine function fit — 
commerical software was used for this fit.  

Regression with log decrement method was 
supplemented with analysis of influential 
observations with Cook’s distances. As it could be 
expected, large peaks were found to be influential, 

most probably due to nonlinearity of the backbone 
curve (geometric nonlinearity).  

The other manifestation of the geometric 
nonlinearity was observed with exponential cosine 
fit. The best fit was observed when the data were 
divided in two time series, corresponding to large 
and small values of roll peaks.  

This study indicates the dominating influence of 
nonlinearity on ONR Tumblehome response, which 
is in contrast to conventional hull behavior such as 
SIO Melvile (Park et al. 2016, 2017), where a single 
curve fit yields the same decay coefficient as the 
averaged log-decrement result. 

The paper focused on uncertainty quantification 
of roll decay data. One of the motivations is further 
propagation of this uncertainty through a dynamical 
system in order to quantify the uncertainty of the 
motion response in waves.  

The original idea seem to be very simple — 
uncertainty manifests itself as a randomness. Thus, 
roll decay coefficients are variables with properties 
known from the uncertainty analysis. Then, the 
dynamical system can be considered as a 
deterministic function of random variables, leading 
to a distribution of the response. However, more 
detail consideration produced more questions than 
answers. 

Theis study has raised some questions; what 
interval should be used for propagation of 
uncertainty: confidence or prediction? Is the 
polynomial model for roll damping right when the 
backbone curve has significant nonlinearity? How to 
characterize modeling uncertainty? These questions 
are, indeed, objectives of the future work. 
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