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ABSTRACT 

Shipboard operational guidance for improved seakeeping is typically performed by looking up data in pre-
computed response tables based on the expected or forecasted sea conditions. However, this may not be 
possible for situations in which the expected sea state is not in these response tables, especially when 
considering bimodal seas. In this paper, operational seakeeping guidance based on the volume-based 
SimpleCode, enhanced by Long Short-Term Memory (LSTM) neural networks, is described and compared 
with higher fidelity models with a particular focus on bimodal seas. The LSTM neural network correction 
provided improved results as compared with SimpleCode without incurring the computational expense of the 
higher fidelity model. 
Keywords: Operational Guidance, Neural Networks, Bimodal Seas, Seakeeping 

 

1. INTRODUCTION 
The safety of a ship and its crew in rough 

weather demands proper operational guidance. 
Operational guidance is provided in the form of 
selection of speeds and headings, and is generally 
based on a look-up in a database for the given 
conditions. However, the ocean environment is 
random and complex, and the environmental 
conditions in the database likely do not describe 
accurately the forecasted multi-directional, sea state. 
Accordingly, efforts must be made to estimate 
quickly ship responses in these multi-directional 
conditions without being data-exhaustive. 

Operational guidance is an important 
consideration in the survival of a ship and has been 
the focus of many International Maritime 
Organization (IMO) publications (IMO 1995, IMO 
2007, IMO 2020). Recommendations for ship-
specific operational guidance has been developed 
and discussed in the interim guidelines of the second 
generation intact stability by IMO (IMO 2020). 
While these guidelines are certainly useful in design 
and at sea, they are not comprehensive. Further work 

and study can be done on more complicated sea 
states, particularly multi-directional waves or simply 
including the swell component as well as the wind-
generated waves. 

Multi-directional considerations were made in 
Yano et al. (2019), where wave radar data generate 
a multi-directional wave spectrum in simulations for 
a Ropax ship. By Grim’s effective wave and a 
reduced-order roll equation, the maximum roll angle 
was estimated for various ship headings in the 
provided directional wave spectrum for multiple 
metacentric height scenarios. While the maximum 
roll angle is very useful, access to additional 
seakeeping data is necessary for investigation into 
other extreme motions and loads. 

In this paper, a method to provide guidance in a 
bimodal wave spectrum environment is 
demonstrated. The method applies two seakeeping 
codes of lower and higher fidelity, which are 
SimpleCode (Weems and Wundrow 2013) and the 
Large Amplitude Motion Program,  or LAMP (Shin 
et al. 2003), respectively. By running the lower 
fidelity code (SimpleCode) under the same 
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conditions of the higher fidelity code (LAMP), the 
motions predicted by SimpleCode can be improved 
to approximate those from LAMP by a Long Short-
Term Memory (LSTM) neural network. After 
training a number of these LSTM networks, many 
LAMP-quality runs can be generated with LSTM-
corrected SimpleCode results in a much more 
computationally efficient manner. 

In the following sections, the network 
architecture for training an LSTM network included 
SimpleCode roll and pitch as input and LAMP 
produced roll and pitch as a target. Then, an 
application with the flared variant of the Office of 
Naval Research Flared hull, or ONRFL (Bishop et 
al. 2005,) over various headings in a bimodal wave 
environment is described. Also, different training 
methods for the neural networks are developed and 
explained. 

2. METHODOLOGY 

SimpleCode and LAMP 
SimpleCode is a reduced order seakeeping code 

that can quickly produce acceptable results (Smith et 
al. 2019). One of the key simplifications is in the 
local variation of wave pressure, where the 
hydrostatic and Froude-Krylov equations can 
instead use volume integrals rather than integrating 
over the surface of the ship (Weems and Wundrow 
2013). With pre-computed Bonjean curves, the 
instantaneous submerged volume and geometric 
center; therefore, sectional hydrostatic and Froude-
Krylov forces can be calculated quickly. 

LAMP is a higher fidelity code that considers all 
forces and moments acting on the ship in the time-
domain in a 6-DOF, 4th order Runge-Kutta solver 
(Shin et al. 2003). Central to the code is the solution 
to the 3-D wave-body interaction problem. Within 
LAMP, the complexity of this solution can be 
altered. LAMP-2 is used, where the pertubation 
velocity potential is solved over the mean wetted 
hull surface and the hydrostatic and Froude-Krylov 
forces are solved over the instantaneous wetted hull 
surface. LAMP has effectively estimated motions 
comparable to model tests (Lin et al. 2007) but is, of 
course, much more computationally expensive than 
a code like SimpleCode. Though some parameters 
e.g., number of wave frequency components, free 
surface panel definition, hull offsets, can be altered, 
LAMP-2 runs in nearly real time i.e., 30 minutes are 

required to generate 30 minutes of data. In the same 
30 minutes and the same number of frequency 
components, SimpleCode can produce upwards of 
5,000 independent realizations. 

SimpleCode has produced an approximation to 
LAMP, especially with tuned radiation and 
diffraction forces included (Weems and Belenky 
2018, Pipiras 2022). However, a fidelity gap exists, 
especially when considering a bimodal wave 
spectrum. 

Long Short-Term Memory 
One of the major drivers of the presented method 

is the Long Short-Term Memory (LSTM) neural 
network (Hochreiter and Schmidhuber 1997). A 
LSTM neural network is a recurrent neural network 
that incorporates both long- and short-term effects 
that are learned and developed during the training 
process. These memory effects are stored in weight 
matrices where they, along with other operations, 
transform input matrices to the target output 
matrices. The following set of equations describe the 
operations that occur in a LSTM layer. 
𝑓𝑓1 = 𝜎𝜎�𝑊𝑊𝑓𝑓1𝑥𝑥

[𝑡𝑡] + 𝑈𝑈𝑓𝑓1ℎ
[𝑡𝑡−1] + 𝑏𝑏𝑓𝑓1� (1) 

𝑓𝑓2 = 𝜎𝜎�𝑊𝑊𝑓𝑓2𝑥𝑥
[𝑡𝑡] + 𝑈𝑈𝑓𝑓2ℎ

[𝑡𝑡−1] + 𝑏𝑏𝑓𝑓2� (2) 

𝑓𝑓3 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ�𝑊𝑊𝑓𝑓3𝑥𝑥
[𝑡𝑡] + 𝑈𝑈𝑓𝑓3ℎ

[𝑡𝑡−1] + 𝑏𝑏𝑓𝑓3� (3) 

𝑓𝑓4 = 𝜎𝜎�𝑊𝑊𝑓𝑓4𝑥𝑥
[𝑡𝑡] + 𝑈𝑈𝑓𝑓4ℎ

[𝑡𝑡−1] + 𝑏𝑏𝑓𝑓4� (4) 

𝑐𝑐[𝑡𝑡] = 𝑓𝑓1 ⊙ 𝑐𝑐[𝑡𝑡−1] + 𝑓𝑓2 ⊙ 𝑓𝑓3 (5) 
ℎ[𝑡𝑡] = 𝑓𝑓4 ⊙ tanh�𝑐𝑐[𝑡𝑡]� (6) 

where 𝑊𝑊 and 𝑈𝑈 are weight matrixes, b are the bias 
vectors, 𝑥𝑥[𝑡𝑡] is the input vector, standardized by the 
respective standard deviations and means for each 
input channel, by the respective  at time t, ℎ[𝑡𝑡] is the 
hidden state vector at time t, 𝑐𝑐[𝑡𝑡] is the cell state 
vector at time t, 𝜎𝜎 is the sigmoid function, tanh() is 
the hyperbolic tangent function, and ⊙ represents 
the Hadamard product. The output or target at time t 
is equal to the hidden state vector at time t, ℎ[𝑡𝑡]. The 
weight matrices and bias vectors are progressively 
learned during the training process to minimize the 
specified loss between the training data and the test 
data. The present work uses the mean-squared error 
to quantify the error between the training and test 
sets. Equation (7) is the formula for the mean-
squared error. 
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𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��𝑦𝑦𝑇𝑇(𝑡𝑡𝑖𝑖) − 𝑦𝑦𝐿𝐿(𝑡𝑡𝑖𝑖)�

2
𝑁𝑁

𝑖𝑖=1

 (7) 

where N is the number of points in the time series, y 
is the response matrix which contains the time series 
of heave, roll, and pitch, subscript T is the target time 
series, subscript L is the LSTM produced time series, 
and 𝑡𝑡𝑖𝑖 is the i-th time instant in the time series. 

The input time series are the heave, roll, and 
pitch quantities provided from 3-DOF SimpleCode 
as well as the input wave elevation at the ship’s 
center of gravity. The target time series are the 
heave, roll, and pitch quantities from 3-DOF LAMP. 
The LSTM architectures were two layers of 30 cells 
each. 

To train the LSTM networks, two fundamental 
approaches were taken. In the first approach, 
multliple LSTM networks were trained with 
unimodal data and tested in a bimodal configuration. 
Throughout this work, this approach is referred to as 
the unimodal approach. In the second approach, a 
single LSTM network was trained with bimodal data 
and tested on different bimodal systems. This 
approach is referred to as the bimodal approach. The 
unimodal and bimodal approaches are separately 
compared with SimpleCode as a baseline, and in the 
case of the unimodal, also compared with different 
training data selection methods. 

Experimental Set-up 
For the presented method in practice, the 

ONRFL hull was employed. The following figure is 
a rendering of the ONRFL and Table 1 provides the 
particulars for the vessel. 

 
Figure 1: 3-dimensional rendering of the ONRFL. 

 
 
 
 
 
 
 

 
 

Table 1: Particulars for the ONRFL. 
Particular Symbol Value 

Length between 
perpendiculars 

𝐿𝐿PP 154.0 m 

Beam 𝐵𝐵 22.0 m 
Draft 𝑇𝑇 5.5 m 
Radius of gyration 
about X-axis 

𝑘𝑘𝑥𝑥𝑥𝑥 8.8 m 

Radius of gyration 
about Y-axis 

𝑘𝑘𝑦𝑦𝑦𝑦 37.2 m 

Vertical center of 
gravity (w.r.t 
baseline) 

𝐾𝐾𝐾𝐾 7.5 m 

Longitudinal center 
of gravity (w.r.t 
midships) 

𝐿𝐿𝑐𝑐𝑐𝑐 -2.5 m 

Displacement mass ∆𝑚𝑚 8730.0 t 
 
For this experiment, a primary International Towing 
Tank (ITTC) spectrum (ITTC 2002) characterizing 
wind-generated waves was applied with 𝐻𝐻s = 7.5 m 
and 𝑇𝑇p = 15.0 s (NATO 1983 standard sea state 7 
and most probable modal period,) and the relative 
wave heading set to bow-quartering seas (135°). The 
secondary ITTC spectrum, characterizing the swell 
component, was added with 𝐻𝐻s =  3.0 m and 𝑇𝑇p =
20.0 s with a relative wave heading that varied from 
0 − 360°. Additionally, the primary ship speed was 
set to 8.0 knots. 

In the unimodal approach, three training data 
grouping schemes were formed. In the three 
schemes, the fundamental characteristics of the 
simulations included in the training set were altered. 
Essentially, each training data simulation was 
exposed to different environmental conditions 
centered on the primary ITTC spectrum. For all of 
the schemes, 81 training simulations of were 
performed. Each simulation contained 18,000 
samples with a time step of 0.1 seconds. In the 
“narrow” scheme, only the primary parameters were 
used i.e., 81 simulations with 𝐻𝐻s = 7.5 m, 𝑇𝑇p =
15.0 s, a heading of 135°, and a speed of 8.0 knots. 
In the “medium” scheme, 𝐻𝐻s varied from 7.0-8.0 m, 
𝑇𝑇p varied from 14.0-16.0 s, the heading varied from 
125 − 145°, and the speed ranged from 6.0-10.0 
knots. Lastly, in the “wide” scheme, 𝐻𝐻s varied from 
6.5-8.5 m, 𝑇𝑇p varied from 13.0-17.0 seconds, the 
heading varied from 115 − 155°, and the speed 
ranged from 4.0-12.0 knots. In both the “medium” 
and “wide” schemes, three values were selected 
from each parameter range, and one simulation was 
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used for training from each of the 81 permutations. 
The idea behind these training schemes was to train 
the neural network to understand how the ship 
responded to different spectra and to adapt to a 
bimodal spectrum. The scheme parameter ranges are 
summarized in Table 2. 

Table 2: Summary of the unimodal LSTM approach 
training data schemes. 

 Narrow Medium Wide 
Significant 
Wave 
Height [m] 

7.5 [7.0,7.5,8.0] [6.5,7.5,8.5] 

Modal 
Period [s] 15.0 [14.0,15.0,16.0] [13.0,15.0,17.0] 

Sea 
Heading 
Angle [deg] 

135 [125,135,145] [115,135,155] 

Ship Speed 
[kts] 8.0 [6.0,8.0,10.0] [4.0,8.0,12.0] 

 
In the bimodal approach, a singular neural 

network was trained on 81 simulations with primary 
spectrum characteristics drawn from the “wide” 
unimodal training set. Of these 81 simulations, 72 
were randomly selected to be trained by the 
secondary spectrum with evenly spaced headings 
between 0 − 360° in 15° increments. The remaining 
9 simulations were generated without including the 
secondary spectrum to introduce more variety and 
flexibility to the network.  

In both approaches, the absolute error between 
the single significant amplitude (SSA) of the LSTM 
provided output and the SSA of LAMP provided 
output for roll and pitch was compared to the 
absolute error between the SimpleCode SSA and 
LAMP SSA for roll and pitch. The SSA is a measure 
of the average of the one-third largest peaks of the 
response and can be estimated for Gaussian 
processes by the following equation. 

𝑀𝑀𝑀𝑀𝑆𝑆 = 2.0�𝑉𝑉�𝑥𝑥 (8) 

where  𝑉𝑉�𝑥𝑥 is the estimated variance of the process, x. 
The absolute error between the SSA values produced 
from LSTM data and LAMP was compared to the 
absolute error between the SimpleCode SSA and 
LAMP. The equation for the absolute error 𝜖𝜖 is as 
follows. 
𝜖𝜖 = |𝑋𝑋�𝐿𝐿 − 𝑋𝑋�𝐸𝐸|  (9) 

where 𝑋𝑋�𝐿𝐿 represents the SSA of LAMP data and  𝑋𝑋�𝐸𝐸 
represents the SSA of the LSTM estimate or 
SimpleCode.  

To test the networks, 36 SimpleCode and LAMP 
test simulations, unseen by the networks during the 
training phase, were produced using the combination 
of the primary spectrum and the secondary spectrum. 
While the primary spectrum was held constant for 
the test simulations, the secondary spectrum was 
varied in heading between 0 − 360° in 10° 
increments. 
The next section compares the roll and pitch results 
of the unimodal and bimodal LSTM approaches to 
LAMP and SimpleCode. 

3. RESULTS 

Unimodal Approach 
In the unimodal approach, a primary wind-sea 

state that was characterized by an ITTC spectrum 
with a significant wave height of 7.5 m, a modal 
period of 15.0 seconds, and a direction of 135° was 
combined with a secondary swell wave spectrum 
that was characterized by a significant wave height 
of 3.0 m, a modal period of 20.0 seconds, and a 
variable direction. However, the LSTM neural 
networks from the three presented schemes were 
only trained by unimodal spectra with ranges 
varying from “narrow” to “wide”. These networks 
were applied to SimpleCode output under the given 
bimodal spectrum with the wave elevation for a 
range of secondary headings and the SSA values 
were recorded.  

The absolute error is indicated in Figure 2 
between the SSA values produced from the unimodal 
LSTM schemes and LAMP as well as the absolute 
error between the SSA values produced from 
SimpleCode and LAMP in roll and pitch for 
secondary sea headings ranging from 0° − 360°.  
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Figure 2: Absolute SSA error between unimodal LSTM 

and LAMP as well as SimpleCode and LAMP in roll and 
pitch for various secondary sea headings. 

The initial insight gathered from the above plots 
is that any LSTM method was an improvement over 
SimpleCode. The LSTM schemes started with the 
SimpleCode results as a baseline and, therefore, 
were expected to make at least some improvement. 
The performance of the LSTM schemes also 
generally seemed to be the best when the secondary 
sea heading was near the primary sea heading of 
135°. Again, the training for each of the schemes 
was centered on the heading of 135°. That said, the 
Medium LSTM and Wide LSTM were more robust 
than the Narrow LSTM in pitch. In roll, however, the 
performance of the schemes was more scattered over 
the various secondary headings, but overall the 
narrow LSTM seemed to perform the best, 
especially at non-roll impacting secondary wave 
headings. Since the primary heading was at 135°, the 
roll was driven by the considerable primary 
significant wave height and effective modal period. 
The increased focus during training at the primary 
direction, wave height, and wave period improved 
performance, except at secondary wave headings 
that influence roll and that approach the ship from 
the opposite side. These cases are most evident at a 
secondary wave heading of 220° and 290°. 

The actual roll time series produced by the 
narrow LSTM at these non-roll impacting headings 
differed considerably from the LAMP roll time 
series. The locally averaged absolute difference 
between the narrow LSTM roll and the LAMP roll 

time series at a secondary heading of 0° is in Figure 
3. 

 
Figure 3: The locally averaged absolute difference 

between the narrow LSTM and LAMP roll time series at a 
secondary heading of 𝟎𝟎°. 

While the narrow LSTM was able to capture the 
SSA at the secondary heading of 0°, the time series 
generated by the LSTM was fundamentally different 
and had little to no improvement compared to 
SimpleCode. While the magnitude of the response 
was captured, the change in the wave elevation time 
series at the center of gravity due to the secondary 
system was enough to affect the phasal relationship. 

Bimodal Approach 
In the bimodal approach, a single neural network 

was trained with simulations generated from the 
“wide” unimodal primary spectra and wave 
directions as well as the secondary spectrum with 
headings ranging from 0 − 360° in 5° increments. 
These simulations accounted for 72 of the 81 
simulations in the training process. The remaining 9 
simulations were obtained from solely the primary 
wave spectra and directions as input. 

Figure 4 shows the absolute error between the 
bimodal LSTM SSA and the LAMP SSA as well as 
the absolute error between the SimpleCode SSA and 
the LAMP SSA for roll and pitch.  
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Figure 4: Absolute SSA error between bimodal LSTM and 
LAMP as well as SimpleCode and LAMP in roll and pitch 
for various secondary sea headings. 

The improvement of the LSTM over 
SimpleCode was much more stark and consistent in 
the bimodal approach than in the unimodal 
approach. The errors were somewhat sporadic and 
are reflective of the random pairings between the 
“wide” unimodal dataset permutations, the 72 
secondary system headings, and 9 simulations with 
solely a primary spectrum. 

Furthermore, the bimodal approach resulted in 
reduced time series errors between LSTM-generated 
roll and LAMP roll. Figure 5 indicates the absolute 
error between the bimodal LSTM roll time series and 
the LAMP roll time series at a secondary heading of 
0°. 

 
Figure 5: The absolute error between the bimodal LSTM 
and LAMP roll time series. 

The differences in the bimodal LSTM network and 
LAMP time series were more muted than in the 
unimodal LSTM approach and considerably less 

than the SimpleCode errors. The relationships within 
the weight matrices were more likely flexible to a 
noisier wave elevation signal and therefore had less 
impact on the roll time series generated by the LSTM 
network.  

4. CONCLUSION 
In this paper, a method to improve prediction of 

ship seakeeping statistics in rough, bimodal seas was 
introduced. Using a LSTM network, corrections 
were applied to the roll and pitch time series 
produced by SimpleCode to achieve results in line 
with LAMP. Two different approaches to training 
the LSTM network were discussed: the unimodal 
approach and the bimodal approach. 

In the unimodal approach, a LSTM network was 
trained with input from a primary spectrum and was 
applied to the SimpleCode time series that were 
influenced by a primary and secondary spectrum. 
Three different schemes were formulated to 
investigate the effect on performance: the narrow, 
medium, and wide schemes (Table 2). In the narrow 
scheme, a number of simulations were drawn from a 
single spectrum. In the medium and wide schemes, 
single simulations were drawn from permutations of 
multiple spectra generated from ranges of significant 
wave height, modal period, ship speed, and primary 
wave heading. In roll, the three schemes performed 
closely in secondary headings within about ±50° of 
the primary heading of 135° but the narrow scheme 
generally performed the best outside of that 50° 
range. However, the time series errors in roll were 
significant. In pitch, the medium and wide schemes 
performed better than the narrow scheme. Overall, 
all of the schemes significantly out-performed 
SimpleCode.  

In the bimodal approach, an error reduction and 
consistency were improved as compared with the 
unimodal approach. Furthermore, the time series 
errors were much reduced as well. 

These networks are not storage intensive, and 
many of these networks could be trained and applied 
quickly and effectively aboard a ship. Furthermore, 
additional studies can be done to investigate the 
flexibility of the bimodal system on other primary 
and secondary spectra parameters. Some 
combination of the unimodal and bimodal 
approaches reduce the error with respect to LAMP 
while also reducing the amount of time spent on 
training these networks. 
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