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ABSTRACT 

Benchmarking and comparative testing of three approaches for direct counting of stability failures are 
described. These approaches are based on estimation of failure rate from sample data using exponential 
distribution, statistical frequency of failures and binomial distribution. All three approaches were included in 
the draft Explanatory Notes for the Second-Generation IMO Intact Stability Criteria. The benchmarking is 
carried out using synthesized data following Poisson distribution. Brief description of the step-by-step 
approaches is included in the paper for the sake of reader’s convenience. 
Keywords: IMO, Second-generation intact stability criteria, Direct stability assessment, Direct counting, Failure rate. 

 
1. INTRODUCTION 

The second-generation intact stability criteria, 
published by IMO for a trial use as MSC.1/Circ.1627, 
contain a provision for application of state-of-the-art 
numerical simulations, referred as direct stability 
assessment. Requirements for the direct stability 
assessment are detailed in the Explanatory Notes; the 
draft was recently approved at the 8th session of the 
Ship Design and Construction Subcommittee (SDC 
8/WP.4) of IMO. These Explanatory Notes are 
expected to be approved and published by the IMO 
Maritime Safety Committee (MSC) in 2022. Both 
probabilistic and deterministic criteria are applicable 
with direct stability assessment (MSC.1/Circ.1627 
paragraph 3.5.3.1.4). 

A probabilistic criterion is formulated in terms 
of the rate of stability failures, i.e. a number of 
failures per time unit. Procedure of estimation of the 
failure rate from time series with observed failures is 
referred to as direct counting. Three direct-counting 
procedures are described in sections 3.3, 3.4 and 3.5 
of the Appendix 4 of the draft Explanatory Notes. 
All these procedures use Poisson process model to 
relate probability of failure with time of exposure. 
Brief overview of a Poisson process is given in the 
next section of this paper. 

Since application of Poisson process model 
requires adoption of certain assumptions, it makes 
sense first to test the direct counting procedures for 
data that actually follow Poisson distribution, where 
the event rate is known. For this purpose, the data are 

not obtained from numerical simulation of ship 
motions in waves but generated in such a way that 
they comply with Poisson process assumptions. The 
objective of this testing is to check if these direct 
counting procedures are capable to recover this 
given event rate. The second objective is to evaluate 
uncertainty quantification techniques included with 
these three direct counting procedures. 

2. POISSON PROCESS 
Poisson distribution (e.g. Hayter, 2012, or Ryan, 

2007) of a discrete random variable is used to 
describe a number of random events that occur 
within certain specified boundaries. A Poisson 
process is a model for a series of these discrete 
events. Application of Poisson distribution for 
stability failures in the context of the Second-
Generation Intact Stability Criteria is described by 
Shigunov (2019); a summary of useful properties of 
a Poisson process is provided here. 

For a Poisson process with a constant rate r > 0, 
the number of events N in a time interval of length t 
satisfies the Poisson distribution 
 

𝑓𝑓(𝑘𝑘) = 𝑝𝑝{𝑁𝑁(𝑡𝑡) = 𝑘𝑘} = (𝑟𝑟𝑡𝑡)𝑘𝑘 ∙ 𝑒𝑒−𝑟𝑟𝑟𝑟/𝑘𝑘!  (1) 
 

which expresses the probability of occurrence of 
k = 0, 1, ... events during a time interval t. A special 
case of eq. (1) is k = 0, which corresponds to the 
probability that no failures occur during time t: 
 

𝑝𝑝 ≡ 𝑝𝑝{𝑁𝑁(𝑡𝑡) = 0} = 𝑒𝑒−𝑟𝑟𝑟𝑟  (2) 
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From eq. (2), it follows that the probability that 
at least one failure happens during time t, i.e. that 
k > 0, (loosely formulated: “probability of stability 
failure during time t”) is 
 

𝑝𝑝∗ ≡ 𝑝𝑝{𝑁𝑁(𝑡𝑡) > 0} = 1 − 𝑝𝑝{𝑁𝑁(𝑡𝑡) = 0}   
     = 1 − 𝑝𝑝 = 1 − 𝑒𝑒−𝑟𝑟𝑟𝑟  (3) 

 

The mean of a Poisson process, i.e. the mean 
number of events per interval t, is 
 

𝜇𝜇𝑁𝑁 = ∑ 𝑘𝑘𝑓𝑓(𝑘𝑘)𝑘𝑘≥0 = 𝑟𝑟𝑡𝑡  (4) 
 

i.e. the rate r is equal to the expected number of 
events per time unit: 
 

𝑟𝑟 = 𝜇𝜇𝑁𝑁/𝑡𝑡  (5) 
 

A useful property of a Poisson process is that 
time intervals between events are independent 
random variables, exponentially distributed with rate 
r (and vice versa: if the time intervals between events 
are not exponentially distributed, the process will not 
be a Poisson process). If 𝑇𝑇 denotes the time to the 
next event, eq. (2) leads to 
 

𝑝𝑝{𝑇𝑇 > 𝑡𝑡} = 𝑒𝑒−𝑟𝑟𝑟𝑟  (6) 
 

for 𝑡𝑡 > 0 and 0 otherwise. 
The independence of stability failures can be 

violated in practice by several effects, one of which 
is the clustering of big roll amplitudes: big roll 
amplitudes tend to appear in groups. The direct 
counting techniques have to include a way to “de-
cluster” big roll amplitudes. The three methods, 
described in the Explanatory Notes (section 3 of the 
Appendix 4 of SDC 8/WP.4), ensure such de-
clustering in different ways. 

The first method (further referred to as M1 for 
brevity) is based on estimation of failure rate from 
sample data using exponential distribution, as 
described in section 3.3 of Appendix 4 of SDC 
8/WP.4. In this method each simulation is conducted 
for arbitrary simulation time, but not longer than the 
occurrence of the first stability failure (note that 
simulation time is limited in any case due to self-
repetition effects). The total simulation time tt and 
the total number of encountered stability failures N 
are used to define the maximum likelihood estimate 
of the stability failure rate from eq. (4) as 
 

�̂�𝑟 = 𝑁𝑁/𝑡𝑡t  (7) 
 

where total simulation time 𝑡𝑡t = ∑ 𝑇𝑇𝑖𝑖𝑁𝑁
𝑖𝑖=1 ; 𝑇𝑇𝑖𝑖 are time 

intervals to each failure. Since the sample mean time 
to failure is 𝑇𝑇� = 𝑡𝑡t/𝑁𝑁, eq. (7) can be also written as 
�̂�𝑟 = 1/𝑇𝑇�. 

The second method (further referred as M2 for 
brevity) is based on estimation of failure rate from 
statistical frequency of failures, as described in 
section 3.4 of Appendix 4 of SDC 8/WP.4. This 
method employs eq. (3), i.e. makes use of the 
probability that at least one failure occurs during 
time 𝑡𝑡 – hence any stability failures encountered in a 
simulation after the first one do not affect the 
estimate. Numerical simulations are carried out for a 
constant time ∆t, and the probability of at least one 
failure in a single simulation is estimated as �̂�𝑝 =
𝑁𝑁/𝑀𝑀, where N is the number of simulations in which 
at least one stability failure was encountered, and M 
is the total number of simulations. 

The third method (further referred as M3 for 
brevity) is based on estimation of the rate from 
sample data using binomial distribution (Leadbetter 
et al. 2019). The method is described in section 3.5 
of Appendix 4 of SDC 8/WP.4. In this method, 
numerical simulations are carried out for arbitrary 
time. All stability failures are recorded. To achieve 
independence of events, only one failure is counted 
during decorrelation time of roll motion. The latter 
is introduced in the section 3.8 of Appendix 4 of 
SDC 8/WP.4 and defined as a time for the envelope 
of autocorrelation function of roll motion to decrease 
to a specified threshold level, set to 0.05. 

3. STEP-BY-STEP PROCEDURES 
The step-by-step procedures are convenient for 

practical application and ensure that the described 
methods are applied in a uniform way. These 
procedures are provided in the Explanatory Notes 
(sections 3.3, 3.4 and 3.5 of Appendix 4 of SDC 
8/WP.4). For the sake of reader’s convenience these 
procedures are briefly summarized below. 

In the M1 method, each simulation is conducted 
for arbitrary simulation time, but not longer than the 
occurrence of the first stability failure (note that 
simulation time is limited in any case due to self-
repetition effects). After each such simulation, 
1. record number of simulation M, number of 

encountered stability failures ∆NM (1 or 0) and 
duration of simulation ∆tM; 

2. calculate N* as N before the simulation plus 1; 
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3. update the total number of failures as N + ∆NM; 
and the total simulation time tt as tt + ∆tM; 

4. update the maximum likelihood estimate (MLE) 
of failure rate as �̂�𝑟 = 𝑁𝑁/𝑡𝑡t; 

5. update the conservative estimate of MLE of 
failure rate as �̂�𝑟∗ = 𝑁𝑁∗/𝑡𝑡t; 

6. update the upper boundary of the 95%-
confidence interval of failure rate using 
equation 𝑟𝑟U = 0.5𝜒𝜒1−0.05/2,2𝑁𝑁∗

2 �̂�𝑟∗/𝑁𝑁∗; and 

7. update the lower boundary of 95%-confidence 
interval of failure rate, 𝑟𝑟L = 0.5𝜒𝜒0.05/2,2𝑁𝑁

2 �̂�𝑟/𝑁𝑁. 

In the M2 method, numerical simulations are 
carried out for a constant simulation time ∆t (which 
is limited by self-repetition effects). After each 
simulation, 
1. record the number of realization M and whether 

this realization led to at least one failure 
(∆𝑁𝑁𝑀𝑀 = 1) or not (∆𝑁𝑁𝑀𝑀 = 0); 

2. update the total number of failures as 𝑁𝑁 + ∆𝑁𝑁𝑀𝑀; 
3.  calculate the probability of at least one failure 

in single simulation as 𝑝𝑝 = 𝑁𝑁/𝑀𝑀 and estimate 
of failure rate as 𝑟𝑟 = − ln(1 − 𝑝𝑝)/∆𝑡𝑡; 

4. update the upper boundary of 95%-confidence 
interval of probability of at least one failure in 
a single simulation as 𝑝𝑝U = 1  for 𝑁𝑁 = 𝑀𝑀  or 
𝑝𝑝U = 𝜈𝜈1𝐹𝐹𝜈𝜈1,𝜈𝜈2,1−0.05/2/(𝜈𝜈2 + 𝜈𝜈1𝐹𝐹𝜈𝜈1,𝜈𝜈2,1−0.05/2) 
otherwise, with 𝑣𝑣1 = 2(𝑁𝑁 + 1)  and 𝑣𝑣2 =
2(𝑀𝑀−𝑁𝑁); 

5. update the lower boundary of 95%-confidence 
interval of probability of at least one failure in 
single simulation as 𝑝𝑝L = 0 for 𝑁𝑁 = 0 or 𝑝𝑝L =
𝜈𝜈1𝐹𝐹𝜈𝜈1,𝜈𝜈2,0.05/2/(𝜈𝜈2 + 𝜈𝜈1𝐹𝐹𝜈𝜈1,𝜈𝜈2,0.05/2)  otherwise, 
with 𝑣𝑣1 = 2𝑁𝑁 and 𝑣𝑣2 = 2(𝑀𝑀 −𝑁𝑁 + 1); 

6. estimate the upper boundary of 95%-confidence 
interval of failure rate, 𝑟𝑟U = −ln (1 − 𝑝𝑝U)/Δ𝑡𝑡; 

7. estimate the lower boundary of 95%-confidence 
interval of failure rate, 𝑟𝑟L = −ln (1 − 𝑝𝑝L)/Δ𝑡𝑡. 

In the M3 method, numerical simulations are 
carried out for arbitrary simulation time (limited by 
self-repetition effects); all stability failures are 
recorded, but not all are counted. Binomial 
distribution is applied to describe the probability that 
there are NaU independent stability failures (i.e. up-
crossing events of a level a or down-crossing events 
of a level –a) out of total 𝑁𝑁𝑎𝑎 = ∑ 𝑁𝑁𝑘𝑘

𝑁𝑁r
𝑘𝑘=1  instances of 

observation of roll motion or lateral acceleration 

amplitude. Here, 𝑁𝑁r  is the total number of records 
comprising the data set of observation and 𝑁𝑁𝑘𝑘, 𝑘𝑘 =
1, … ,𝑁𝑁r, denotes the number of observations in each 
record (the records may contain different numbers of 
observations and be of different durations). 

The first stability failure after initial transition 
time is an independent event; the next independent 
stability failure is counted only after decorrelation 
time Tdc has passed. The total number of independent 
stability failures is 𝑁𝑁𝑎𝑎𝑎𝑎 = ∑ 𝑁𝑁𝑎𝑎𝑘𝑘

𝑁𝑁r
𝑘𝑘=1 , where NUk is 

the number of independent stability failures 
observed during the k-th record. 

The failure rate is estimated as �̂�𝑝 = 𝑁𝑁𝑎𝑎𝑎𝑎Δ𝑡𝑡/𝑇𝑇𝑎𝑎, 
where ∆t is time increment used in simulation and 
𝑇𝑇𝑎𝑎 = ∑ (𝑁𝑁𝑘𝑘Δ𝑡𝑡 − 𝑇𝑇ramp)𝑁𝑁𝑟𝑟

𝑘𝑘=1  is the total time of all 
records, with the constant ramp time Tramp excluded 
to account for initial transients. 

The number of independent stability failures 
𝑁𝑁𝑎𝑎𝑎𝑎 is a random binomial-distributed variable. The 
binomial distribution has only one parameter, the 
probability that the event will occur at any particular 
instant of time. This probability can be estimated as 
�̂�𝑝 = 𝑁𝑁𝑎𝑎𝑎𝑎Δ𝑡𝑡/𝑇𝑇𝑎𝑎. The variance of 𝑁𝑁aU can be estima-
ted as 𝑉𝑉�𝑁𝑁𝑎𝑎 = 𝑇𝑇𝑎𝑎�̂�𝑝(1− �̂�𝑝)/∆𝑡𝑡, and the boundaries of 
the confidence interval of the failure rate estimate 
were computed, using normal approximation for 
binomial distribution, as 𝑟𝑟U,L = (𝑁𝑁𝑎𝑎𝑎𝑎 ±
𝑄𝑄𝑁𝑁(0.5(1 + 𝑃𝑃𝛽𝛽))𝑉𝑉�𝑁𝑁𝑎𝑎

1/2)/𝑇𝑇𝑎𝑎 , where 𝑄𝑄𝑁𝑁  is the 
quantile of the standard normal distribution and 𝑃𝑃𝑏𝑏 
is the accepted confidence probability. For 𝑃𝑃𝑏𝑏 =
0.95, 𝑄𝑄𝑁𝑁(0.5(1 + 𝑃𝑃𝛽𝛽)) = 1.96. 

4. INPUT DATA AND CALCULATIONS  
Three authors independently executed the step-

by-step procedures described in the previous section. 
The objectives of testing were to find out, whether 
• the procedures are uniformly understood, 
• there could be any improvements in the text, 
• misinterpretation is possible, 
• all the authors obtain the same results  using the 

same procedure, and 
• all procedures are able to recover correct result. 

The overall objective of this study was to test the 
direct counting methods in “ideal” conditions, where 
the data are generated in such a way that they comply 
with Poisson process assumptions and the “true” rate 
of events is known. Based on this experience, under-
standing and uniform interpretation of the detailed 
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“step-by-step” descriptions could be ensured. Two 
tests were undertaken, using 
• a single data set to focus on comparison of 

numerical results against a known answer and 
verify the interpretation of the detailed “step-by-
step” procedures, and 

• multiple data sets to focus on verification of the 
calculation of confidence interval: the number of 
successful estimates should be close to the 
confidence probability. 
In the single data set test, the rate of events 𝑟𝑟 was 

set to 7.0 ∙ 10−4 s−1 to generate a sample of 𝑁𝑁 = 25 
exponentially distributed times 𝑇𝑇𝑖𝑖 between failures, 
𝑖𝑖 = 1,2, … ,𝑁𝑁. Note that a variable 𝑇𝑇, exponentially 
distributed with the rate 𝑟𝑟, can be generated as 𝑇𝑇 =
− ln𝑥𝑥 /𝑟𝑟, where 𝑥𝑥 is a random variable drawn from 
a uniform distribution on the unit interval (0,1) (in 
MS Excel, rand() function can be used). 

The generated time intervals between events are 
shown in Table 1 (the total time is 28093.6081 s). 
The maximum likelihood estimate of the rate from 
the full generated sample is �̂�𝑟 = 8.899 ∙ 10−4 s−1, 
and the estimates of the mean and standard deviation 
of time between events are 𝑇𝑇� = 1123.74 s and 𝜎𝜎�𝑇𝑇 =
1005.55 s, respectively. 

 
Table 1. Generated time intervals between events used in test 
concerning single data set 
2733.980 2679.500 445.665 258.192 1073.380 
2792.510 280.590 1820.620 942.395 237.282 
524.140 2362.350 546.241 1218.310 1121.510 

1217.190 288.416 465.511 74.271 24.568 
48.523 2658.140 2993.350 855.247 431.727 

 

This test verified the estimates of the failure rate 
and upper and lower boundaries of its 95%-confi-
dence interval provided by the three methods. 

What are the expected results of the test? In an 
ideal case, the direct counting methods should be 
able to capture the full data set in Table 1. Thus, the 
expected result is the maximum likelihood estimate, 
i.e. �̂�𝑟 = 8.899 ∙ 10−4 s−1, further referred to as the 
benchmark estimate. However, the compared direct 
counting methods are intended for practical post-
processing of ship motion simulation data and 
include provisions to insure independence of events. 
As a result, the outcome of the test may not necessa-
rily recover the benchmark estimate exactly, hence 
one of the checks is to compare the rate estimates by 
the three methods with the benchmark estimate. 

On the other hand, the ultimate aim of direct 
counting is the true rate value, i.e. 7. 0 ∙ 10−4 s−1. As 

the dataset is finite, the rate estimate is a random 
number, comparison of which with the true rate is 
meaningless. However, the confidence interval, if it 
is correctly constructed about this estimate, should 
contain the true value with the specified confidence 
probability, i.e. 95%-confidence interval is expected 
to contain the true rate 𝑟𝑟 = 7.0 ∙ 10−4 s−1  with a 
95%-chance. Since each considered method applies 
own technique to construct a confidence interval, the 
first logical step would be to see whrther the three 
confidence intervals do contain the true value. How-
ever, a more conclusive test would be to check 
whether the true rate is within the confidence 
interval with 95%-confidence probability. Such a 
test requires multiple data sets. 

In the test concerning multiple data sets, the 
same rate of events 𝑟𝑟 = 7.0 ∙ 10−4 s−1 was applied 
to generate 𝑀𝑀 = 104  data sets, each consisting of 
𝑁𝑁 = 25  exponentially distributed time intervals 
between events 𝑇𝑇𝑖𝑖,𝑗𝑗 , where 𝑖𝑖 = 1, … ,𝑁𝑁  and 𝑗𝑗 =
1, … ,𝑀𝑀. The confidence intervals were verified, for 
𝑁𝑁 = 1,2, … ,25, by counting the number of cases, out 
of 𝑀𝑀 = 104 , where the true rate value 𝑟𝑟 = 7.0 ∙
10−4 s−1 is within the confidence interval, above its 
upper boundary or below its lower boundary: if the 
confidence intervals are correct, such cases should 
comprise 95%, 2.5% and 2.5%, respectively, of all 
cases (if the confidence probability is set to 0.95). 

5. RESULTS: SINGLE DATA SET 
In this test, estimates of the failure rate and its 

95%-confidence interval with the three methods 
were compared. 

First, present the interval data from Table 1 in a 
format, typical for outcome of numerical simulation 
of ship motions. For the M1 method, duration of a 
simulation is arbitrary, and the result does not 
depend on the duration of individual simulations. 
The maximum length of a simulation is defined by 
self-repetition effects. For comparison purposes, the 
maximum length of a simulation was set to 1800.0 s. 
The transformation of data in Table 1 into an input 
for the M1 method is shown in Fig. 1, where 
observed events are depicted as dots. 

Reformatting the data from Table 1 to Fig. 1 is 
straight forward. The time until the first stability 
failure is 2733.980 s. It is larger than the simulation 
length of 1800 s, so the fisrt record does not have any 
observed events. The fisrt event is observed during 
the second record at the time instant 2733.98 s −

https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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1800.0 s = 933.98 s etc. Since some time intervals 
between failures in Table 1 exceed the assumed 
simulation duration, Fig. 1 contains 32 records, 
while there are only 25 events: seven record do not 
contain any observed events. 

Table 2 shows results including the index of a 
record 𝑀𝑀, observed number of failures ∆𝑁𝑁𝑀𝑀 , time 
before failure ∆𝑡𝑡𝑀𝑀  (if no failure was observed, 
∆𝑡𝑡𝑀𝑀 = 1800 s), the total time (cumulative for all 
records) 𝑡𝑡t, maximum likelihood estimate of failure 
rate �̂�𝑟 and upper 𝑟𝑟U and lower 𝑟𝑟L boundaries of the 
95%-confidence interval of the failure rate. Since the 
time until the first stability failure was 2733.980 s, 
no stability failure occurred (∆𝑁𝑁1 = 0) in the first 
simulation (𝑀𝑀 = 1) of duration ∆𝑡𝑡1 = 1800 s. The 
first stability failure occurred in the second 
simulation (∆𝑁𝑁2 = 1) at the time instant 2733.980 s 

– 1800.0 s = 933.98 s after its start, at which this 
simulation stopped (∆𝑡𝑡2 = 933.98 s). In the third 
simulation of duration ∆𝑡𝑡3 = 1800 s , again no 
stability failure occurred (∆𝑁𝑁3 = 0) until its end: the 
time to the second failure was 2792.510 s, i.e. 
2792.510 s – 1800.0 s = 992.51 s after the start of the 
fourth simulation (∆𝑡𝑡4 = 992.51 s) etc. Since the 
time until the last stability failure was 431.727 s, one 
stability failure (∆𝑁𝑁32 = 1) occurred in the last, 32-
nd simulation, at the time instant ∆𝑡𝑡32 = 431.727 s 
after ist start (at this instant, the simulation stopped). 
In total, 32 simulations of the total duration 

28093.6081 s were conducted, in which 25 stability 
failures were encountered. For the complete dataset 
(32 records), 𝑟𝑟� = 8.899 · 10−4

 s−1  (which agrees 
with the benchmark estimate), 𝑟𝑟U = 1.271 10−3 s−1 
and 𝑟𝑟L = 5.759 · 10−4 s−1. 

 
Table 2. Application example of M1-procedure 
𝑀𝑀 ∆𝑁𝑁𝑀𝑀 ∆𝑡𝑡𝑀𝑀, s 𝑁𝑁 𝑁𝑁∗ 𝑡𝑡t, s �̂�𝑟, s-1 �̂�𝑟∗, s-1 𝑟𝑟U, s-1 𝑟𝑟L, s-1 

 

1 0 1800.0 0 1 1800.0 0.0 5.556e-4 2.049e-3 - 
2 1 933.98 1 1 2733.98 3.658e-4 3.658e-4 1.349e-3 9.260e-6 
3 0 1800.0 1 2 4533.98 2.206e-4 4.411e-4 1.229e-3 5.584e-6 
4 1 992.51 2 2 5526.5 3.619e-4 3.619e-4 1.008e-3 4.383e-5 
5 1 524.14 3 3 6050.64 4.958e-4 4.958e-4 1.194e-3 1.022e-4 
6 1 1217.19 4 4 7267.83 5.504e-4 5.504e-4 1.206e-3 1.500e-4 
7 1 48.52 5 5 7316.35 6.834e-4 6.834e-4 1.400e-3 2.219e-4 
8 0 1800.0 5 6 9116.35 5.485e-4 6.582e-4 1.280e-3 1.781e-4 
9 1 879.5 6 6 9995.85 6.002e-4 6.002e-4 1.167e-3 2.203e-4 
10 1 280.55 7 7 10276.4 6.812e-4 6.812e-4 1.271e-3 2.739e-4 
11 0 1800.0 7 8 12076.4 5.796e-4 6.624e-4 1.194e-3 2.330e-4 
12 1 562.4 8 8 12638.8 6.330e-4 6.330e-4 1.141e-3 2.733e-4 
13 1 288.4 9 9 12927.2 6.962e-4 6.962e-4 1.219e-3 3.183e-4 
14 0 1800.0 9 10 14727.2 6.111e-4 6.790e-4 1.160e-3 2.794e-4 
15 1 858.2 10 10 15585.4 6.416e-4 6.416e-4 1.096e-3 3.077e-4 
16 1 445.6 11 11 16031.0 6.862e-4 6.862e-4 1.147e-3 3.425e-4 
17 0 1800.0 11 12 17831.0 6.169e-4 6.730e-4 1.104e-3 3.080e-4 
18 1 20.6 12 12 17851.6 6.722e-4 6.722e-4 1.103e-3 3.473e-4 
19 1 546.3 13 13 18397.9 7.066e-4 7.066e-4 1.139e-3 3.762e-4 
20 1 465.5 14 14 18863.4 7.422e-4 7.422e-4 1.178e-3 4.058e-4 
21 0 1800.0 14 15 20663.4 6.775e-4 7.259e-4 1.137e-3 3.704e-4 
22 1 1193.3 15 15 21856.7 6.863e-4 6.863e-4 1.075e-3 3.841e-4 
23 1 258.2 16 16 22114.9 7.235e-4 7.235e-4 1.119e-3 4.135e-4 
24 1 942.4 17 17 23057.3 7.373e-4 7.373e-4 1.127e-3 4.295e-4 
25 1 1218.3 18 18 24275.6 7.415e-4 7.415e-4 1.121e-3 4.395e-4 
26 1 74.3 19 19 24349.9 7.803e-4 7.803e-4 1.168e-3 4.698e-4 
27 1 855.3 20 20 25205.2 7.935e-4 7.935e-4 1.177e-3 4.847e-4 
28 1 1073.3 21 21 26278.5 7.991e-4 7.991e-4 1.175e-3 4.947e-4 
29 1 237.3 22 22 26515.8 8.297e-4 8.297e-4 1.211e-3 5.200e-4 
30 1 1121.5 23 23 27637.3 8.322e-4 8.322e-4 1.205e-3 5.275e-4 
31 1 24.6 24 24 27661.9 8.676e-4 8.676e-4 1.248e-3 5.559e-4 
32 1 431.7 25 25 28093.6 8.899e-4 8.899e-4 1.271e-3 5.759e-4 

 
For the methods M2 and M3, the simulations 

were assumed to be of the same length 1800.0 s for 
comparison. Fig. 2 shows the data from Table 1 as 
events (depicted as dots) observed per record. 

Reformatting the data from Table 1 to Fig. 2 is 
also straight forward. The only difference compared 
to the method M1 is that a record may have mutiple 
events (if the time between them is small enough to 
fit into a single simulation). 

Note that records 5, 14 and 16 contain events, 
which are very close to each other. If the data were 
obtained from numerical simulations of ship motion, 
these events may be expected to be dependent. How-
ever, as the data in Table 1 follow Poisson process 
per the definition, such cases when events are too 
close do not represent a concern in this study. 

The result of the method M2 depends on the ex-
posure time ∆𝑡𝑡 (or number 𝑀𝑀 of simulations for the 
same total simulation time), therefore, several values 
of ∆𝑡𝑡 were used for testing and comparison. Using 
the duration of each simulation ∆𝑡𝑡 = 1800 s leads 

 
Fig. 1. Representation of events observed per record 
based on Table 1, formatted as input for M1 
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to 16 records in total and the following estimates: 
𝑟𝑟 = 8.443 ∙ 10−4 s−1 , 𝑟𝑟U = 1.321 ∙ 10−3 s−1  and 
𝑟𝑟L = 5.094 ∙ 10−4 s−1 , which deviate from the 
benchmark estimate and results of the other two 
methods. 

Reducing the exposure time ∆𝑡𝑡 (i.e. increasing 
the number 𝑀𝑀  of simulations) improves accuracy: 
for example, for a duration of each simulation of 1 s 
(which means 𝑀𝑀 = 28094 simulations), results are 
very close to the benchmark estimate and results of 
the other two methods: 𝑟𝑟 = 8.902 ∙ 10−4 s−1  (vs. 
the benchmark estimate 8.899 · 10−4 s−1 ), 𝑟𝑟U =
1.314 ∙ 10−3 s−1, 𝑟𝑟L = 5.761 ∙ 10−4 s−1. 

Table 3 shows examples of results for 𝑀𝑀 from 1 
to 2000. For 𝑀𝑀 = 1, only one (𝑀𝑀 = 1) simulation of 
the total duration 28093.6081 s was conducted, in 
which, the first stability failure occurred at the time 
instant 2733.980 s after the start (𝑁𝑁 = 1 ), after 
which, everything that happened in the simulation 
was ignored. As 𝑀𝑀 = 1 and 𝑁𝑁 = 1, 𝑝𝑝 = 𝑁𝑁/𝑀𝑀 = 1. 
For 𝑀𝑀 = 2, two (𝑀𝑀 = 2) simulations, each of the 
duration 0.5 ∙ 28093.6 s = 14046.8 s were conduc-
ted. In the first of these simulations, the first stability 
failure occurred at the time instant 2733.980 s after 
its start, and the remaining part of this simulation 
was ignored. In the second simulation, the first 
stability failure (which is the tenth stability failure in 
Table 1) occurred at the time instant 15585.4 s – 

14046.8 s = 1538.6 s after its start, and the remaining 

part of this simulation was ignored. Since 𝑀𝑀 = 2 
and 𝑁𝑁 = 2, 𝑝𝑝 = 𝑁𝑁/𝑀𝑀 = 1 etc. For 𝑀𝑀 = 2000, the 
duration of each simulation was 28093.6081 s/
2000 ≈ 14.05 s, thus all 25 stability failures were 
counted, and 𝑝𝑝 = 25/2000 = 0.0125. 

 
Table 3. Application examples of M2-procedure 
𝑀𝑀 ∆𝑡𝑡, s 𝑁𝑁 𝑝𝑝 �̂�𝑟, s-1 𝑟𝑟U, s-1 𝑟𝑟L, s-1 

 

1 28093.6 1 1 - - 9.012e-7 
2 14046.8 2 1 - - 1.225e-5 
3 9364.53 3 1 - - 3.693e-5 
4 7023.4 4 1 - - 7.217e-5 
5 5618.72 5 1 - - 1.158e-4 
6 4682.27 6 1 - - 1.662e-4 
7 4013.37 7 1 - - 2.224e-4 
8 3511.7 8 1 - - 2.836e-4 
9 3121.51 9 1 - - 3.491e-4 

10 2809.36 10 1 - - 4.186e-4 
11 2553.96 10 9.091e-1 9.389e-4 2.379e-3 3.465e-4 
12 2341.13 11 9.167e-1 1.061e-3 2.632e-3 4.079e-4 
13 2161.05 10 7.692e-1 6.785e-4 1.383e-3 2.867e-4 
14 2006.69 13 9.286e-1 1.315e-3 3.148e-3 5.395e-4 
15 1872.91 12 8.000e-1 8.593e-4 1.676e-3 3.909e-4 
16 1755.85 12 7.500e-1 7.895e-4 1.493e-3 3.683e-4 
17 1652.56 12 7.059e-1 7.405e-4 1.375e-3 3.513e-4 
18 1560.76 13 7.222e-1 8.207e-4 1.495e-3 4.010e-4 
19 1478.61 12 6.316e-1 6.753e-4 1.227e-3 3.272e-4 
20 1404.68 15 7.5e-1 9.869e-4 1.742e-3 5.063e-4 
50 561.87 22 4.4e-1 1.032e-3 1.576e-3 6.346e-4 

100 280.94 23 2.3e-1 9.303e-4 1.398e-3 5.857e-4 
200 140.47 24 1.2e-1 9.101e-4 1.355e-3 5.814e-4 
500 56.19 25 5.0e-2 9.129e-4 1.348e-3 5.902e-4 
1000 28.09 25 2.5e-2 9.012e-4 1.330e-3 5.829e-4 
2000 14.05 25 1.25e-2 8.955e-4 1.322e-3 5.794e-4 

 
Using simulations of constant duration 1800 s in 

the method M3 led to 16 equal records of total durati-
on 28800 s and 𝑟𝑟 = 6.944 ∙ 10−4 s−1  (vs. the 
benchmark estimate 8.899 · 10−4 s−1 ), 𝑟𝑟U =
9.666 ∙ 10−4 s−1  and 𝑟𝑟L = 4.223 ∙ 10−4 s−1 . 
Cutting the duration of the last record up to the time 
instant of event (i.e. setting the total duration to 
28093.6 s) led to 𝑟𝑟� = 8.899 · 10−4

 s−1  (which is 
equal to the benchmark estimate and the rate 
provided with M1 method), 𝑟𝑟U = 1.239 ∙ 10−3 s−1 
and 𝑟𝑟L = 5.441 ∙ 10−4 s−1 . The mathematical 
reason for the observed behavior of the rate estimate 
is not clear. 

Comparison 
Fig. 3 compares the estimates of the failure rate 

and the upper and lower boundaries of its 95%-
confidence interval between the three methods (the 
exposure time in the method M2 was set to 1800 s) 
vs. the number of events, and Fig. 4 compares the 
failure rate and the upper and lower boundaries of its 
95%-confidence interval for 𝑁𝑁 = 25. 

 
Fig. 2. Representation of events observed per record 
based on Table 1, formatted as input for M2 and M3 
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All three confidence intervals do contain the true 
value of the rate 7.0 ∙ 10−4 s−1 , moreover, their 
boundaries are very close. The benchmark estimate 
�̂�𝑟 = 8.899 ∙ 10−4 s−1 is reproduced by M1 and M3 
procedures, while the M2 estimate is slightly 
different, but happen to be closer to the true rate for 
the considered sample. 

To analyse the reason why the procedure M1 
reproduces the benchmark estimate, note that the 
maximum likelihood estimate (step 4 for the M1 
procedure) is essentially the same as the one applied 
to the data in Table 1 if the last simulation ends with 
a stability failure. However, if the last simulation 
does not end with a stability failure, this procedure 
provides a conservative estimate by assuming a 
stability failure just at the instant of stopping. 

Similarly, the M3 procedure uses the same 
maximum likelihood estimate of the rate as was 
applied to the data in Table 1. As in this test the data 

points are assumed independent, the decorrelation 
time is zero and therefore, no data points were 
excluded. However, to reproduce the benchmark 
estimate exactly, the duration of the last records 
needs to be corrected by excluding the time after the 
last event. 

To understand why the M2 procedure provides a 
different estimate, note that the formulation “at least 
one event”, used in the M2 procedure, means that the 
number of events per simulation can be one or two, 
or three etc. Thus if a simulation contains more than 
one event (which is a case for 10 records in Fig. 2), 
the events beyond the first one do not change the 
estimate. To see a limit behavior of the M2 procedu-
re, the exposure time was set to 1.0 s; Fig. 5 and 
Fig. 6 show respective results (the other two proce-
dures are unchanged). When the exposure time is 
significantly reduced, the rate estimate obtained with 
the M2 procedure becomes almost identical to those 
obtained with the M1 and M3 procedures. 

This can be expected for two reasons: first, the 
number of failures 𝑁𝑁  correctly captured if the 
simulation time ∆𝑡𝑡 is sufficiently small, so that each 
simulation contains not more than one failure (in the 
example in Table 3, this for ∆𝑡𝑡 ≤ 56.19 s , which 
corresponds to 𝑀𝑀 ≥ 500. Second, the rate in the M2 
method is estimated as 𝑟𝑟 = − ln(1 − 𝑝𝑝) /∆𝑡𝑡, where 
𝑝𝑝 = 𝑁𝑁/𝑀𝑀 . Therefore, 𝑟𝑟 = − ln(1 −𝑁𝑁/𝑀𝑀) /∆𝑡𝑡 , 
which converges to 𝑟𝑟 = 𝑁𝑁/(𝑀𝑀∆𝑡𝑡) = 𝑁𝑁/𝑡𝑡t for ∆𝑡𝑡 →
0 while 𝑀𝑀∆𝑡𝑡 = const = 𝑡𝑡t, i.e. the rate estimate in 
the M2 method converges to the maximum like-
lihood estimate in the zero-limit exposure time. 

 

 
Fig. 5. Estimates of failure rate and upper and lower 
boundaries of its 95%-confidence interval (exposure time 
in M2-method 1 s) vs. number of events 

 

 
Fig. 3. Estimates of failure rate and upper and lower 
boundaries of its 95%-confidence interval (exposure time 
in M2-procedure is 1800 s) vs. number of events 

 

 
Fig. 4. Estimate of failure rate and upper and lower 
boundaries of its 95%-confidence interval for 𝑵𝑵 = 𝟐𝟐𝟐𝟐 
(using exposure time 1800 s in M2-procedure) 
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Fig. 6. Estimate of failure rate and upper and lower 
boundaries of its 95%-confidence interval for 𝑵𝑵 = 𝟐𝟐𝟐𝟐 
(using exposure time 1 s in M2-method) 

 

6. RESULTS: MULTIPLE DATA SETS 
In this test, multiple (𝑀𝑀 = 104) data sets were 

generated, each consisting of 𝑁𝑁 = 25  events. The 
number of cases, out of 𝑀𝑀 = 104 , was counted, 
when the true rate value 𝑟𝑟 = 7.0 ∙ 10−4 s−1 is within 

the estimated confidence interval, above its upper 
boundary or below its lower boundary. If the proce-
dures are as accurate as expected, the true rate value 
should be within the estimated confidence interval, 
above its upper boundary and below its lower 
boundary in about 95%, 2.5% and 2.5% of all cases, 
respectively (although random deviations from these 
numbers are expected). 

Table 4 shows results for the sample sizes 𝑁𝑁 =
1,2, … ,25 (in all cases, the number of data sets is the 
same 𝑀𝑀 = 104 ). For M1-method, the number of 
“misses” in both directions, i.e. 𝑟𝑟 > 𝑟𝑟U and 𝑟𝑟 < 𝑟𝑟L, 
is close to 2.5% for all sample sizes 𝑁𝑁 , i.e. M1 
method accurately estimates both the upper and 
lower boundaries of the 95%-confidence interval of 
failure rate for all sample sizes. 

For the M2-method, the number of misses 𝑟𝑟 >
𝑟𝑟U is lower than 2.5% (significantly lower for small 
sample sizes 𝑁𝑁 ), i.e. the upper boundary of the 
confidence interval is slightly high. 

 
Table 4. Sample size N, number of estimates above estimated upper boundary 𝒓𝒓 > 𝒓𝒓𝐔𝐔 and below estimated lower boundary 
𝒓𝒓 < 𝒓𝒓𝐋𝐋 of 95%-confidence interval of failure rate, as well as number of estimates 𝒓𝒓𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢, which are within estimated 95%-
confidence interval, depending on sample size for 104 data sets 

𝑁𝑁 𝑟𝑟 > 𝑟𝑟U, % 𝑟𝑟 < 𝑟𝑟L, % 𝑟𝑟inside, % 
M1 M2 M3 M1 M2 M3 M1 M2 M3 

1 2.50 0.40 5.76 2.46 2.46 0.01 95.04 97.14 94.23 
2 2.36 0.60 4.93 2.54 2.54 0.00 95.10 96.86 95.07 
3 2.50 0.64 4.51 2.58 2.58 0.00 94.92 96.78 95.49 
4 2.34 0.76 4.46 2.44 2.44 0.00 95.22 96.80 95.54 
5 2.54 0.91 4.22 2.63 2.63 0.07 94.83 96.46 95.71 
6 2.49 1.06 4.32 2.57 2.57 0.15 94.94 96.37 95.53 
7 2.60 1.05 4.20 2.48 2.48 0.13 94.92 96.47 95.67 
8 2.53 1.01 4.22 2.44 2.44 0.24 95.03 96.55 95.54 
9 2.53 1.11 4.10 2.44 2.44 0.33 95.03 96.45 95.57 
10 2.48 1.31 4.05 2.42 2.42 0.47 95.10 96.27 95.48 
11 2.62 1.25 3.99 2.32 2.32 0.55 95.06 96.43 95.46 
12 2.68 1.25 4.07 2.30 2.30 0.62 95.02 96.45 95.31 
13 2.38 1.37 4.04 2.28 2.28 0.78 95.34 96.35 95.18 
14 2.53 1.46 3.77 2.31 2.30 0.77 95.16 96.24 95.46 
15 2.48 1.48 3.73 2.43 2.42 0.8 95.09 96.10 95.47 
16 2.57 1.53 3.79 2.49 2.48 0.83 94.94 95.99 95.38 
17 2.80 1.56 3.81 2.27 2.26 0.88 94.93 96.18 95.31 
18 2.83 1.61 3.85 2.28 2.27 0.99 94.89 96.12 95.16 
19 2.59 1.68 3.66 2.42 2.42 0.94 94.99 95.90 95.40 
20 2.62 1.64 3.65 2.39 2.39 1.03 94.99 95.97 95.32 
21 2.63 1.62 3.50 2.50 2.50 1.00 94.87 95.88 95.50 
22 2.49 1.69 3.40 2.51 2.51 1.05 95.00 95.80 95.55 
23 2.61 1.55 3.56 2.43 2.43 1.12 94.96 96.02 95.32 
24 2.48 1.56 3.40 2.48 2.48 1.04 95.04 95.96 95.56 
25 2.41 1.52 3.48 2.52 2.52 1.13 95.07 95.96 95.39 
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The number of under-estimates 𝑟𝑟 < 𝑟𝑟L  is close 
to 2.5% for all sample sizes 𝑁𝑁, which means that this 
method accurately estimates the lower boundary. 

For the M3-method, the number of misses 𝑟𝑟 >
𝑟𝑟U is slightly but systematically more than 2.5%, and 
the number of misses 𝑟𝑟 < 𝑟𝑟L  is slightly but 
systematically less than 2.5%, especially at small 𝑁𝑁. 
The method shows some asymmetry in the evalua-
tion of confidence interval. The total number of 
successful estimates, however, remains very close to 
the given confidence probability of 0.95. 

7. CONCLUSIONS 
The objective of the described effort was to 

compare three approaches to direct counting, 
included in the draft Explanatory Notes for the IMO 
Second-generation intact stability criteria. These 
three approaches are based on the estimation of 
failure rate from sample data using exponential 
distribution, statistical frequency of failures and 
binomial distribution. 

A comparison of these methods was carried out 
using synthesized data set following Poisson 
distribution. The ability of these approaches to “de-
cluster” large roll response remains outside of the 
scope of this paper. The advantage of using 
synthesized data is that the events are known to be 
independent, which is assumed in the derivation of 
the three tested procedures. 

All three approaches were able to correctly 
estimate the failure rate – the true value of the failure 
rate was within the confidence interval. It was noted 
that the accuracy of the procedure using statistical 
frequency of failures improves with decreasing 
exposure time. 

Constructing confidence intervals was bench-
marked by repeating the estimation procedure 104 
times and counting the number of successes (when 
the confidence interval contains the benchmark 
value). The estimate of the confidence interval was 
considered to be correct when percentage of suc-
cesses was close to the accepted confidence probabi-
lity. All three approaches demonstrated correct tech-
niques for construction of confidence intervals. 

The described effort used synthesized data 
following Poisson distribution. Further study should 
use data derived from simulation of ship motion, so 
that de-clustering capabilities of the three approa-
ches could also be addressed. Another characteristic 

to compare is the practicability of the three methods 
in actual assessment. 
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