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ABSTRACT 

In the direct counting method used in the direct stability assessment, it is essential whether a self-repetition 
effect of roll motion is present or not. In this study, three methods of modelling irregular waves are examined 
for self-repetition. The first method discretises a wave spectrum with uniformly distributed frequencies; the 
second method divides the spectrum into equal areas by changing the sampled frequency intervals, and the 
third method linearly filters the white noise. In the latter two methods, we observe that time history does not 
have a self-repetition effect from the result of the autocorrelation function, and we discuss the accurate 
modelling of irregular waves by using the probability density function and the spectrum of the time history. 
Furthermore, using these methods, the self-repetition effect in the time history of roll motion is investigated. 
As a result, we confirm that the non-uniform frequencies method and the linear filtering of white noise can 
obtain a time history that does not have any self-repetition effects for up to 9 hours. 
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1. INTRODUCTION 
The second-generation intact stability criteria 

developed by the International Maritime 
Organization (IMO) opened the door to using the 
stochastic time-domain numerical simulation as the 
direct stability assessment (IMO, 2020). In the 
direct stability assessment, if self-repetition of roll 
motion appears, it could result in under evaluation 
of the occurrence probability of the stability failures, 
such as capsizing. The calculation of ship motion 
requires the modelling of irregular waves. The time 
history of wave elevation is modelled by the inverse 
Fourier transformation or linearly filtering white 
noise. The former method includes two techniques 
to sample wave frequencies: one way discretises a 
wave spectrum with uniformly distributed 
frequencies; the other way divides the spectrum into 
equal areas by changing the sampled frequency 
intervals (Hirayama et al., 2009). In other words, the 
difference is that the sampled frequency interval is 
uniform or non-uniform. For the inverse Fourier 
transformation, Belenky (2011) concluded that the 
nature of self-repetition of irregular waves is a 
numerical error caused by the highly oscillatory 
character of an integrand in cosine Fourier 
transformation for a large value of time such as 1 
hour. Concerning the linear filtering of white noise, 

Spanos (1983, 1986), Flower (1983, 1985), and 
Thampi (1992) applied a linear filter for the 
generation of stochastic time series based on wave 
spectra using the Autoregressive Moving 
Averaging (ARMA) process, which was a good 
approximation of the process obtained from sea 
wave spectra. Furthermore, Degtyarev and Reed 
(2011) and Degtyarev and Gankevich (2012) 
discussed that the autoregressive model was used to 
describe the wave surface and incident random 
waves.  

In this study, these different methods for 
modelling irregular waves and roll motion are 
examined not only for the incident waves but also 
for the roll motions. Here, we generate the time 
histories for up to 9 hours, evaluate the 
autocorrelation functions and discuss the self-
repetition. As a result, a guide for the sampled 
frequency number requiring a longer duration is 
provided for the inverse Fourier transformation. A 
guide is provided for the required time step for the 
linearly filtered white noise.  

2. MODELLING OF WAVES 
In this study, each method for modelling 

irregular waves is explained mathematically, and 
the calculation results are considered. In these cases, 
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Fast Fourier Transform (FFT) is applied to the 
generated time history of irregular waves. As a 
result, the spectra and autocorrelation functions are 
obtained. The smoothing is not used in this analysis. 
Throughout the paper, the calculation condition is 
set that the wave mean period is 9.99s and the 
significant wave height is 5.0m. 

Inverse Fourier transformation with uniform 
frequency sampling (Method 1) 

As expressed in Eq.(1), the time history of wave 
elevation 𝜁𝜁𝑤𝑤(𝑡𝑡)  can be computed by a sum of 
trigonometric functions(Hino, 1977). In this case, 
this process is assumed to be a Gaussian process.  

𝜁𝜁w(𝑡𝑡) = � �2𝑆𝑆w(𝜔𝜔)𝑑𝑑𝜔𝜔
∞

0

cos(𝜔𝜔𝑡𝑡 + 𝛿𝛿) 

          = ��2𝑆𝑆w(𝜔𝜔𝑛𝑛)∆𝜔𝜔𝑛𝑛

𝑁𝑁

𝑛𝑛=1

cos(𝜔𝜔𝑛𝑛𝑡𝑡 + 𝛿𝛿𝑛𝑛) 

(1) 

Here, 𝜔𝜔𝑛𝑛, ∆𝜔𝜔𝑛𝑛 and 𝛿𝛿𝑛𝑛 describe the wave frequency, 
the frequency interval and the phase of the wave. 𝑁𝑁 
denotes the number of elements. In this study, the 
ITTC spectrum is used to approximate the ocean 
wave spectrum 𝑆𝑆w(𝜔𝜔), which is given by 
𝑆𝑆w(𝜔𝜔) = 𝐴𝐴𝜔𝜔− 5exp(−𝐵𝐵𝜔𝜔− 4) 
where 
𝐴𝐴 = 173𝐻𝐻1 3⁄

2𝑇𝑇01− 4, 𝐵𝐵 = 691𝑇𝑇01− 4 
(2) 

Here, 𝐻𝐻1 3⁄  (𝑚𝑚)  and 𝑇𝑇01 (𝑠𝑠)  are the significant 
wave height and the mean period, respectively. 

The method, which divides a wave spectrum 
into uniform frequency intervals, is examined. In 
this paper, this method is called “Method 1”. It is 
widely known that the time history of irregular 
waves by Method 1 has a self-repetition depending 
on the frequency interval (Hirayama et al., 2009). 
Especially, this time history depends on the 
minimum wave frequency. The autocorrelation 
function of the time histories generated by this 
method is discussed. The component wave of the 
minimum wave frequency can be expressed as 
follows: 
𝑥𝑥min(𝑡𝑡) = 𝑎𝑎min𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔min𝑡𝑡 + 𝛿𝛿min) . (3) 

Here, 𝑥𝑥min , 𝑎𝑎min , 𝜔𝜔min , and 𝛿𝛿min  denote the 
wave elevation of the component wave, the 
amplitude of the component wave, the minimum 
wave frequency, and the phase of the component 
wave. Here, the index “min” denotes the element of 
the component wave of the minimum wave 

frequency. The autocorrelation function can be 
derived as 

𝑅𝑅𝑚𝑚𝑚𝑚𝑛𝑛(𝜏𝜏) = lim
𝑇𝑇→∞

1
𝑇𝑇�

𝑥𝑥min(𝑡𝑡)𝑥𝑥min(𝑡𝑡 + 𝜏𝜏)𝑑𝑑𝑡𝑡
𝑇𝑇 2⁄

−𝑇𝑇 2⁄
 

                =
𝑎𝑎min2

2
cos 𝜔𝜔min𝜏𝜏 

(4) 

Based on Eq.(4), it follows that the spike in the 
autocorrelation function occurs at a period 𝜋𝜋 𝜔𝜔min⁄ . 

The calculations were executed with the two 
different uniform frequencies Δ𝜔𝜔 of Method 1: one 
is 0.02[rad/s], and the other is 0.06[rad/s]. The 
generated time histories of irregular waves are 
shown in Figure 1, and the autocorrelation functions 
are in Figure 2. The minimum wave frequency 
means the median of 𝜔𝜔 = 0  and 𝜔𝜔 = Δ𝜔𝜔 . 
Therefore, the minimum wave frequencies for the 
two cases are 0.01[rad/s] and 0.03[rad/s]. Thereby, 
the self-repetition periods of the time histories are 
mathematically obtained as 628[s] and 209[s]. As 
shown in Figure 1, wave groups repeat at these 
periods. In addition, the spike period of the 
autocorrelation function can be calculated as 314[s] 
and 105[s] for these cases. As shown in Figure 2, it 
is observed that these mathematically calculated 
results are validated. 

 
Figure 1: Time series of wave elevations by Method 1. 
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Figure 2: Autocorrelation function for irregular waves of 

Figure 1, calculated by FFT. 

 

Inverse Fourier transformation with non-uniform 
frequency sampling (Method 2) 

The method, which divides the spectrum so that 
the energies of component waves are equal to each 
other, is discussed. In this paper, this method is 
called “Method 2”. In this method, the wave 
amplitude of each component wave is constant. 
Based on Shuku et al. (1979), the amplitude and the 
wave frequency of the arbitrary component wave in 
the case of the ITTC spectrum can be derived using 
the following equations. 

𝑎𝑎𝑛𝑛 = � 𝐴𝐴
2𝐵𝐵𝑁𝑁

≅ 0.3538 ×
𝐻𝐻1 3⁄

√𝑁𝑁
 (5) 

𝜔𝜔𝑛𝑛 =
1
𝐵𝐵 �

ln
2𝑁𝑁

2𝑛𝑛 − 1�
−14

≅
5.127
𝑇𝑇01

�ln
2𝑁𝑁

2𝑛𝑛 − 1�
−14

 
(6) 

From Eq.(6), the ratio of the wave frequency of two 
arbitrary component waves is defined as Eq.(7). 

𝜌𝜌 =
𝜔𝜔𝑚𝑚

𝜔𝜔𝑗𝑗
=
�ln 2𝑁𝑁

2𝑚𝑚−1
�
−14

�ln 2𝑁𝑁
2𝑗𝑗−1

�
− 14

 (7) 

where 𝜌𝜌 is a positive value. In this method, if more 
than one of the ratios between different two 
component wave’s frequencies are rational number, 
the time history has a self-repetition period. 
Thereby, the ratio 𝜌𝜌  is used for discussing the 
occurrence of a self-repetition. Firstly, for the 
convenience of explanation, 𝑘𝑘𝑚𝑚  is defined as 𝑘𝑘𝑚𝑚 =
ln(2𝑁𝑁 2𝑖𝑖 − 1⁄ ). Here, we discuss whether 𝑘𝑘𝑚𝑚  is a 
rational or irrational number. For this purpose, 𝑘𝑘𝑚𝑚 is 
assumed to be a positive rational number. Thereby, 

𝑘𝑘𝑚𝑚 = 𝑛𝑛 𝑚𝑚⁄  is expressed by a natural number 𝑛𝑛 and 
𝑚𝑚. Based on the above facts, Eq.(8) can be obtained. 

(2𝑁𝑁)𝑚𝑚 = 𝑒𝑒𝑛𝑛(2𝑖𝑖 − 1)𝑚𝑚 (8) 
where 𝑒𝑒 denotes Euler’s number. Due to the power 
of a natural number, the left-hand side of Eq.(8) and 
(2𝑖𝑖 − 1)𝑚𝑚 are natural numbers. Due to the power of 
an irrational number, 𝑒𝑒𝑛𝑛  is an irrational number. 
Thus, the right-hand side of Eq.(8) follows as an 
irrational number from the multiplication of an 
irrational and a natural number. Therefore, there is 
a contradiction between the left-hand side of Eq.(8) 
and the right-hand side of Eq.(8). 𝑘𝑘𝑚𝑚 is an irrational 
number, which is proved by reductio ad absurdum. 
Furthermore, 𝑘𝑘𝑚𝑚

0.25 is an irrational number because 
the power root of an irrational number is an 
irrational number. Thereby, 𝑘𝑘𝑚𝑚

− 0.25 is an irrational 
number because the inverse of an irrational number 
is an irrational number. Therefore, it is clear that the 
wave frequency 𝜔𝜔𝑛𝑛 of each component wave is an 
irrational number. From the above proof, the ratio 𝜌𝜌 
is the ratio of an irrational number to an irrational 
number. When 𝑖𝑖 ≠ 𝑗𝑗 , it cannot be determined 
whether 𝜌𝜌 is an irrational number or not. 

Since the non-existence of self-repetition is not 
mathematically provided, the numerical calculation 
of Method 2 is conducted for two different numbers 
of sampled frequencies for elements: one is 100 and 
the other is 10000. FFT analyses the generated time 
history of irregular waves for 9 hours. As shown in 
Figure 3, we can observe the comparison of the 
spectra between the FFT result and the spectrum 
specified by Eq.(2). As the number of elements 
increases, marked spikes of the spectra decrease. As 
shown in Figure 4, we can observe the 
autocorrelation function of the two cases. In the 
upper panel of Figure 4, the spreading error can be 
observed in the autocorrelation function. Belenky 
(2011) observed a comparable result of the 
autocorrelation function. As the number of elements 
increases, the autocorrelation functions converge to 
zero drastically and overall are less noisy. In 
contrast to Figure 2, it can be stated that the 
irregular waves generated by Method 2 here do not 
have a self-repetition. Especially, the greater 
number of elements there are, a self-repetition 
hardly occurs. 

Furthermore, the spectra obtained from the 1 
hour-time history for different element numbers and 
the specified spectrum are compared in the Mean 
Squared Error (MSE). The result can be shown in 
Figure 5. Concerning the spectrum, if the number of 
elements is 1000 or more, it can be seen that Method 
2 can adequately generate the time history of 
irregular waves. 
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Figure 3: Comparison between ITTC spectrum and the 
spectrum obtained by FFT. 

 
Figure 4: Autocorrelation function for irregular waves of 

Method 2, calculated by FFT. 

 

Figure 5: Relationship between MSE and the number of 
elements with equal wave energies. 

 

Linearly filtered white noise (Method 3) 
The real noise, such as sea waves, is not white but 
coloured. This process could be generated from 
filtered white noise via the stochastic differential 
equation for the stochastic method. In this study, to 
realise real noise from white noise, the time history 
of irregular waves is modelled using an 
Autoregressive Moving Average (ARMA) process. 
We presume a more accurate approximation can be 
obtained using a higher-order linear filter. 
Therefore, the following 6th-order ARMA filter is 

used as Eq.(9). Here, 𝑥𝑥1  denotes the wave 
amplitude, and 𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡⁄  is the white noise. The 
spectrum 𝑆𝑆6 corresponding to Eq.(9) is expressed as 
Eq.(10). 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝑥𝑥1
𝑑𝑑𝑡𝑡

= 𝑥𝑥2 − 𝛼𝛼1𝑥𝑥1
𝑑𝑑𝑥𝑥2
𝑑𝑑𝑡𝑡

= 𝑥𝑥3 − 𝛼𝛼2𝑥𝑥1 + √𝜋𝜋Γ
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

𝑑𝑑𝑥𝑥3
𝑑𝑑𝑡𝑡

= 𝑥𝑥4 − 𝛼𝛼3𝑥𝑥1
𝑑𝑑𝑥𝑥4
𝑑𝑑𝑡𝑡

= 𝑥𝑥5 − 𝛼𝛼4𝑥𝑥1
𝑑𝑑𝑥𝑥5
𝑑𝑑𝑡𝑡

= 𝑥𝑥6 − 𝛼𝛼5𝑥𝑥1
𝑑𝑑𝑥𝑥6
𝑑𝑑𝑡𝑡

= −𝛼𝛼6𝑥𝑥1

 (9) 

𝑆𝑆6 (𝜔𝜔) = 
Γ2𝜔𝜔6

�−𝜔𝜔6 + 𝛼𝛼2 𝜔𝜔4 − 𝛼𝛼4 𝜔𝜔2 + 𝛼𝛼6 �
2

+ �𝛼𝛼1 𝜔𝜔5 − 𝛼𝛼3 𝜔𝜔3 + 𝛼𝛼5 𝜔𝜔�
2  (10) 

It is necessary to determine the coefficients 𝛼𝛼𝑚𝑚 and 
Γ included in Eq. (10) to fit the ITTC spectrum well. 
In this case, the stability criterion of the system 
proposed in Maruyama et al. (2022) is applied. This 
criterion means the numerical stability and uses the 
denominator of the transfer function derived from 
Eq.(9). As a result, the solid red line in Figure 6 can 
be obtained. This spectrum agrees with the 
specified ITTC spectrum plotted by the solid black 
line well. The time history of irregular waves can be 
modelled by calculating the stochastic differential 
equation (SDE) corresponding to Eq.(9) 
numerically. In this paper, this method is called 
“Method 3”. The time history is computed using the 
Euler-Maruyama method (Maruyama, 1955). The 
time step is set as 0.001[s]. The solid grey line of 
Figure 6 shows the spectrum, while Figure 7 shows 
the autocorrelation function. These results are 
obtained using FFT for the time history generated 
by Method 3 for 9 hours. This spectrum agrees with 
𝑆𝑆6  and 𝑆𝑆w  well, and it is clear that the spectrum 
characteristics reflect on the time history modelled 
by computing the SDE. For this autocorrelation 
function, there is no significant spike. Compared 
with Figure 2, it is considered that irregular waves 
for modelling by Method 3 do not have a self-
repetition. Furthermore, in Figure 8, the difference 
between the spectrum obtained from the time 
history of Method 3 for 1 hour at each time step and 
the ITTC spectrum is evaluated by MSE. In Figure 
9, the difference between the PDF obtained from the 
time history of Method 2 for 1 hour and the PDF 
obtained from the time history of Method 3 is 
evaluated by MSE. As a result, from the viewpoint 
of the spectrum and the PDF, if the time step in the 
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Euler-Maruyama method is 0.02[s] or less, it can be 
seen that Method 3 can adequately generate the time 
history of irregular waves. 

 
Figure 6: Comparison of the ITTC spectrum, the ARMA 
spectrum, and the spectrum obtained by FFT. 

 
Figure 7: Autocorrelation function for irregular waves of 

Method 3, calculated by FFT. 

 

 
Figure 8: Relationship between MSE of spectra and time 

step. 

 

Figure 9: Relationship between MSE of the wave 
amplitude’s PDFs and time step. 

 

3. ROLL MOTION 
Although we confirmed no self-repetition of 

the incident waves generated by Method 2 or 3, it is 
still not certain whether the roll motion due to the 
incident waves has a self-repetition. The roll motion 
itself is a kind of band-pass filter so that the element 
preventing the self-repetition of the incident waves 
could be excluded. Therefore, using these three 
methods, self-repetitions of the roll motions are 
investigated. In this study, to derive the time history 
of roll angle, the self-repetition effect is discussed 
using the equation for nonlinear parametric roll 
motion in irregular longitudinal waves modelled 
with Eq.(11). 
�̈�𝜙 + 𝛽𝛽1�̇�𝜙 + 𝛽𝛽3�̇�𝜙3 

+�𝛾𝛾2𝑚𝑚−1𝜙𝜙2𝑚𝑚−1
5

𝑚𝑚=1

+�𝜆𝜆𝑗𝑗

12

𝑗𝑗=1

𝐴𝐴𝑤𝑤𝜙𝜙𝑗𝑗 = 0 
(11) 

Here, the roll angle, the roll velocity, and the roll 
angular acceleration are denoted by 𝜙𝜙, �̇�𝜙, and �̈�𝜙, 
respectively. The parameter 𝛽𝛽1 is the linear and 𝛽𝛽3 
is the cubic damping coefficient, 𝛾𝛾2𝑚𝑚−1 (𝑖𝑖 =
1,2,3,4,5) is the coefficient of the i-th component of 
the polynomial fitted GZ curve, 𝜆𝜆𝑗𝑗(𝑗𝑗 = 1,2,⋯ , 12) 
is the coefficient of the j-th component of the 
polynomial that fits the relationship between ∆𝐺𝐺𝐺𝐺 
and wave elevation at amidships, shown in 
Maruyama et al. (2022). Moreover, Aw is the 
effective wave amplitude. The role of this 
relationship is to translate a Gaussian process such 
as the effective wave into a non-Gaussian process 
such as the parametric excitation. In this study, the 
subject ship is a post-Panamax containership of the 
C11 class, which is utilised in our previous study 
(Maruyama et al., 2022). 
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Figure 10: Comparison among the roll motion spectra 
obtained using three methods. 

 
Figure 11: Autocorrelation functions of roll motion 

obtained by using three methods. 

 

The time history of roll angle is calculated 
using the waves generated by three methods, and 
each simulation duration is 9 hours. The uniform 
step width Δ𝜔𝜔 of Method 1 is set at 0.02[rad/s], the 
number of elements of Method 2 is set at 1000, and 
the time step in the numerical calculation of Method 
3 is set at 0.001[s]. Firstly, the spectra of Figure 10 
are obtained by FFT for the time history of roll 
angle. Secondly, the autocorrelation functions of 
Figure 11 are obtained by applying FFT to the 
spectra with no smoothing. In Method 1, the 
repetition period of irregular waves is 628[s]. The 
spectrum of Method 1, plotted by the solid black 
line in Figure 10, has spikes at uniform intervals. 
Even as the time lag increases, spikes can be 
observed occurring in the autocorrelation function 
of Method 1 in Figure 11 at the same time step. On 
the other hand, the spectra of Method 2 and 3 in 
Figure 10 are noisy but have the same results. 
Furthermore, as the time lag increases, the 
autocorrelation functions of Method2 and 3 in 
Figure 11 generally converge to zero. 
 

CONCLUDING REMARKS 
In this study, by setting a sufficient number of 

elements, i.e. 10000 elements, we could observe 
that self-repetition does not occur in the nine hour-
time history of the method, which divides the 
spectrum into equal areas by changing the sampled 
frequency intervals. Furthermore, we confirmed 
that the required time step to generate from filtered 
white noise via the stochastic differential equation 
is 0.001s. The marked spike does not occur for the 
autocorrelation function of the time history by the 
linearly filtered white noise for 9 hours. Moreover, 
each method modelling irregular waves is applied to 
the equation of roll motion due to the incident waves 
for investigating the self-repetition of roll angle. As 
a result, no self-repetition of the roll motion due to 
the incident waves was confirmed when the incident 
waves do not have self-repetition. 
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