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ABSTRACT 

Records of nonlinear ship motion data, which are the basis for a probabilistic assessment of 
dynamic stability of a ship in irregular waves, are produced by time-domain numerical simulations 
or model tests in a basin. The volume of such samples is finite, so any statistical estimates 
calculated from a sample are random numbers and need to have a confidence interval, which 
quantifies the statistical uncertainty of the estimate. Ship motion data samples generally come in the 
form of an ensemble of records for a given condition, in which dependence may be very strong 
within the record, while the records themselves are independent of one another.  

Since multiple data points describe the same feature of the process, statistically dependent data 
usually contains less information in comparison to independent data, so the confidence interval is 
wider for a set of dependent data than for the same amount of independent data. The paper revisits 
known mathematical methods to account for data dependency in computing the variance of the 
mean estimate and the variance of the variance estimate, which are the basis for computing a 
confidence interval of these estimates. The paper also addresses the calculation of the variance of 
the mean and variance of the variance for an ensemble of independent records of different length. 
The issue of minimum record length is considered and it is shown that a record of any length can 
contribute to the ensemble estimates of mean and variance. 
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1. INTRODUCTION

The development of probabilistic models
for the assessment of the dynamic stability of a 
ship requires a characterization of the nonlinear 
response of the ship to severe sea conditions. 
This characterization is generally based on 
time-domain numerical simulations or model-
scale experiments in large, “random” waves 
derived from theoretical or experimental 
representations of severe ocean waves.  The 
direct results of such model test or numerical 
simulation campaigns are presented as a set of 
time histories of ship motion in large amplitude, 
irregular waves. 

As the waves are irregular, the time 
histories are records of a stochastic process of 
ship motions. The most basic statistical 
processing includes the estimation of the mean 
value and variance or standard deviation. These 
estimates are essentially random numbers, 
which tend to the true value as the volume of 
data increases. A confidence interval is a 
measure of how close the estimate is likely to 
be to the true value, and is presented as a range 
of values and a probability, P  that the true 
value is within that range. For example, an 
estimate of standard deviation with its 
confidence interval can be presented as: 

]|;[ˆ Puplow (1)

891



Proceedings of the 12th International Conference on the Stability of 
Ships and Ocean Vehicles, 14-19 June 2015, Glasgow, UK. 

It means that there is a P  chance that the true 
value of the standard deviation is between the 
lower boundary low and upper boundary up.
The confidence probability P  is an a priori
given or agreed value; P =0.95 is widely used 
for engineering purposes. The “hat” above a 
symbol indicates an “estimate”, which is a 
random value. The absence of a “hat” indicates 
that the value is deterministic.  

Engineering calculations will typically use 
the upper and/or lower values of the confidence 
interval as a bound of the actual expected value. 
For example, if a measure of the intensity of 
ship motion is needed for further assessment or 
calculation, the upper boundary of confidence 
interval can be used as a conservative value. A 
change to the confidence probability P  allows 
the conservatism of the assessment to be 
“tuned” to a level appropriate for the task in 
hand.  A larger P will result in a wider 
confidence interval for an estimate and a wider 
range of values for assessments based on that 
estimate, but reduce the likelihood that the true 
value of the assessment is outside of the 
computed range.  

Confidence intervals are heavily used in 
validation as they enable the comparison of 
two estimates; this application aspect (among 
others) is considered in Smith and Zuzick 
(2015) and is outside of the scope of this paper. 
Another use for the confidence interval is in the 
planning of model tests and numerical 
simulations, as it can help to determine the 
number and length of model tests or simulation 
runs that are needed to achieve required 
accuracy; this type of application is also 
outside the scope of this paper.

The uncertainty of statistical estimates is of 
particular concern for assessments, which 
involve the prediction of extreme responses or 
low-probability events form non-linear time 
domain data. Since these assessments are 
fundamentally extrapolations, the uncertainty 
in the results will tend to be very sensitive to 
the uncertainty in the statistical 
characterization of the data.  For this reason, 

the consideration of the statistical uncertainty 
of ship motions is an important part of the 
ONR project “A Probabilistic Procedure for 
Evaluating the Dynamic Stability and 
Capsizing of Naval Vessels” (Belenky, et al.,
2015).

2. CONCEPT OF ENSEMBLE

The ensemble is a set of ship motion data
records which represent a single or narrow 
range of sea and operating conditions. By its 
definition, it presumes that more than one 
record may be needed. Why is this so? 

Limitations on record length; for model 
tests in a seakeeping basin, the limited size 
of the facility will limit the duration of any 
test run with forward speed.  As a result, a 
single record may have too few wave 
encounters to assess motions.  This will 
particularly be true for cases with high 
speed and/or following or quartering seas. 

Practical non-ergodicity; the nonlinearity of 
ship behavior may cause one run to be 
insufficient for a complete assessment, 
even if it is relatively long. A typical 
example is parametric roll in head seas 
(Reed 2011), for which a typical run in a 
linear basin did not provide the necessary 
variation in initial conditions for proper 
statistical characterization of parametric 
roll. 

Valid modeling of irregular waves for 
numerical simulation. The elevation, 
pressure and velocity field of the incident 
wave is generally modeled using Fourier 
series, where amplitudes are defined by 
spectra and phases are random. The 
duration for which such a model will 
produce statistically independent waves 
will depend on the number of frequencies 
used for the discretization of a spectrum 
(Belenky, 2011). Increasing the number of 
frequencies in the wave model incurs a 
significant computational cost, so a set of 
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relatively short records, each of which 
requires fewer wave frequencies, is 
computationally more efficient than one 
long record requiring many frequencies. 

The records in ensemble are not necessarily 
of the same length. It is both difficult and 
unnecessary to ensure that experimental runs 
have exactly the same duration.  

In the analysis of irregular wave motion 
data, the processes of waves and ship motions 
are assumed to be stationary. If the ship 
capsizes, the response of the “mast-down” ship 
will be fundamentally different for its upright 
response, which has to be considered as a 
violation of the stationarity of the motion 
process.  Attempting to include pre-capsize, 
capsize and post-capsize motion as part of a 
single stationary process will make the required 
volume of the data impractical. As a result, the 
record has to be cut immediately prior to 
capsizing. Similarly, it may be necessary to 
truncate a model test run if variations in the 
speed or relative heading of the ship become 
too large.  Both of these scenarios may result in 
records of different lengths.

Thus, the ensemble for a particular wave 
environment, speed and heading is an irregular 
data structure that can be described by a 
“nested array” defined as an array that contains 
other arrays as elements. To avoid confusion 
with typical matrix notation, the following 
nomenclature will be used: 

NrjNpixX jji ,..1;,...1;  (2) 

The index within the square bracket refers to a 
data point within a record while the index 
outside of the square brackets relates to the 
record number. An example data structure is 
illustrated in Figure 1. 

Figure 1: Illustration of a nested array 

The data points within each record are 
dependent, while no dependence in expected 
between the records. Dependence between the 
data points is a result of inertia of ship motions, 
hydrodynamic memory and inertia of water 
particles in wave. Independence between 
simulation records is ensured by using different 
pseudo-random sets of initial phases in the 
model of the irregular waves. Independence 
between model test records is supported by the 
pseudo-random actuation of the wave maker 
and by the time lag between runs; this time 
usually is sufficient for the waves to be 
radiated and decay on the damping beach of a 
basin.

The combination of dependent and 
independent data within a single sample is 
specific to ship motion data. 

3. ESTIMATES FOR A SINGLE
RECORD

The consideration starts with examining
mean value and variance estimates and their 
confidence interval for a single record. To 
simplify the notation, the square brackets and 
record index are not used in this section. 

3.1 Dependence and Uncertainty 

Consider the mean value and variance 
estimates.  

Np

i
ix

Np
E

1

1ˆ (3)

j=1

j=Nr

 t = t Np1
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i Ex
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2ˆ
1

1ˆ (4)

The dependency within a record does not 
matter for these estimates. Changing the 
sampling rate or time increment will change 
the number of data points, but it will be 
reflected in the number Np. As long as the time 
increment remains within the reasonable range, 
e.g. it does not become large compared to the
response period of the ship, the estimates (3)
and (4) are affected very little.

This is not true for the confidence interval. 
The confidence interval is a metric of statistical 
uncertainty, which generally decreases with an 
increased volume of the sample. Theoretically, 
the width of the confidence interval goes to 
zero when the volume of the sample becomes 
infinite, because the estimate becomes a true 
value. Increasing the sampling rate does not 
increase the amount of information available in 
the sample; however the number of data points 
becomes larger. The data points become closer 
to each other. Since the same information is 
carried by more points, the dependence 
between data points becomes stronger, and the 
contribution of each of them is decreased. 

Conversely, if the increment between the 
data points is increased, their dependence is 
decreased and the contribution of each 
individual data point becomes larger. Further 
increase of the increment (decrease of the 
sampling rate) should lead to independence. 
Once the independence is achieved, the 
contribution of each data point can no longer 
be affected by other points. This means that the 
number of independent points will define the 
amount of information available in the sample. 
The dependence between the data points may 
therefore have a serious effect on uncertainty 
and the width of the confidence interval. The 
mathematical treatment of this influence is 
considered further. 

3.2 Variance of the Mean Value 

Estimates of the mean value and variance of 
the process X are random numbers and, as any 
other random numbers, may have a variance. 
Priestley (1981) gives a general direction for 
the derivation of the formulae for the variance 
of mean value and variance estimates. That 
derivation was reproduced in Belenky et al.
(2013) in order to examine the role of the 
assumption of normal distribution for X. An 
abridged version of this derivation in included 
below for the sake of completeness. 

Apply a variance operator to both sides of 
equation (3) and treat the sum as if the values 
are dependent, so the variance of the sum is a 
sum of all of the terms of the covariance 
matrix: 

Np

i

Np

j
ji

Np

i
i

xxCov
Np

x
Np

E

1 1
2

1

),(1

1varˆvar
 (5) 

Var(..) is the variance operator and Cov(..) is 
the covariance operator. Since the process X is 
assumed to be stationary, its auto-covariance 
function depends only on the difference in time 
(time lag) between the two points and does not 
depend on particular time instances:

1...,1,0
)()(),(

Npk
RtRxxCov kjiji  (6) 

Consider a sum of all the elements of the 
covariance matrix in Equation (5): 
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894



Proceedings of the 12th International Conference on the Stability of 
Ships and Ocean Vehicles, 14-19 June 2015, Glasgow, UK. 

The elements of the main diagonal are 
variances: 

VRR )0()( 0 (8) 

The other elements on the line parallel to the 
main diagonal are also the same; the next 
element to the term R( 0)=V is always R( 1),
then R( 2) and so forth.  The main diagonal of a 
Np×Np square matrix contains Np elements. 
The lines of elements parallel to the main 
diagonal and located next to it contain only Np-
1 elements. Each subsequent line will have one 
fewer element, until diagonals at the low-left or 
upper-right corner have only one element. 
Having in mind that the covariance matrix is 
symmetric relative to its main diagonal and all 
the “lines of elements” except the main 
diagonal are encountered twice: 

1

1

121

1 1

)()(2

)(...)()2()()1(2
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Substitution of Equation (9) into Equation (5) 
leads to the standard formula for the variance 
of the mean value estimate (see e.g. Priestly 
1981):

1

1
)(12ˆvar

Np

i
iR

Np
i

NpNp
VE  (10) 

The first term in Equation (10) is actually 
the variance of the mean estimate of a random 
variable, while the second term accounts for 
the dependence between the data points of a 
stochastic process. As expected, if the process 
X is uncorrelated white noise (Wiener process), 
the result is identical to the one for a random 
variable, because the auto-covariance function 
of the white noise equals zero for all non-zero 
time lags. 

3.3 Variance of the Variance 

Variance is, by definition, the average of 
centered squares, so a process Y is introduced 
as:

22 ÊxExy iii (11)

The estimate of the mean value of the process 
Y is the estimate of the variance of the original 
process x:

VEy
ˆˆ (12)

The variance of the mean estimate of the 
process Y is then the variance of the variance 
estimate of the process X:

1

1
)(12ˆvar

Np

i
iy

y R
Np
i

NpNp
V

V  (13) 

Vy and Ry are, respectively, the variance and the 
auto-covariance function of the process of 
centered squares Y.

The standard formula for the variance of the 
variance (e.g. Priestley 1981) uses the 
assumption that the process X is normal, which 
leads to

1

1

2
2

)(142ˆvar
Np

i
iR

Np
i

NpNp
VV  (14) 

Because for the normal process 

22 )(2)(;2 RRVV yy  (15)

Reed (2011) uses an alterative form of (14): 

1

)1(

2
|| )(||12ˆvar

Np

Npi
iR

Np
i

Np
V  (16) 

As noted in Belenky, et al. (2013), there is 
no apparent reason to use the normal 
assumption for the process X.  The calculation 
of the auto-covariance function of the centered 
squares requires little additional computation 
effort in comparison with the straight auto-
covariance function. 

(9)
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3.4 Estimate of Auto-Covariance 

To use Equations (10) and (13), it is 
necessary to estimate the auto-covariance 
functions of the processes X and Y. The 
estimate is expressed as: 

iNp

j
ijji ExEx

iNp
R

1

)ˆ)(ˆ(1'ˆ  (17) 

Accuracy of the estimate (17) deteriorates very 
quickly for larger time lags due to insufficient 
data – as the time lag gets larger there are 
fewer pairs of data points with that time lag. 
This leads to statistical “noise” as shown 
Figure 2.  This is obviously noise as there is no 
reason why the dependence could that strong 
after 500 seconds. 

Figure 2 Estimate of auto-covariance function

This loss of accuracy can be alleviated by a 
simple weighting factor: (Np-i)/Np. Such 
weighting results in little change to the auto-
covariance function for small time lags as the 
difference between Np and Np-i is not 
significant for small i.  When the index i
becomes large, the amount of available data 
decreases and therefore the influence of its 
contribution also decreases. The weighted 
estimate is expressed as: 

iNp

j
ijji ExEx

Np
R

1

)ˆ)(ˆ(1ˆ (18) 

The result of weighting the estimate of the 
auto-covariance function is shown in Figure 3. 
It is apparent that the amount of “noise” has 
subsided, while the initial part (first 100 
seconds) has not changed very much. Details 
on the numerical example can be found in 
Belenky et al. (2013). 

Figure 3 Weighted estimate of auto-covariance 
function

However, weighting the estimate may not 
be sufficient to get rid of all of the “noise”. 
Cases are still possible when the “noise” makes 
the calculations completely senseless (e.g.
producing negative value of the variance of the 
mean) if one uses the estimate (18) in formulae 
(10) or (13). Since the auto-covariance
estimates at large lags are still not very reliable,
they can be cut off, at a point designated M.
Equations (10) and (13) are re-written as:

1

1
)(ˆ12ˆrâv
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Belenky, et al. (2013) considered M=Np/2,
which works well if the estimate of the auto-
covariance is fairly accurate. Further review of 
the literature has led to (Priestly, 1981; 
Brockwell and Davis, 2008 ): 

NpM (21)

Some sources also suggest Np2 or 2/Np .
The origin of this formula is optimality of 
spectral smoothing. The range [0.5Np0.5;
2Np0.5] appears to represent an area where the 
result is not very sensitive to the specific value 
of M. The operation of cutting off the 
autocorrelation function is essentially the same 
as smoothing the spectral estimate. Spectral 
representations are a traditional way of 
processing ship motion information and can 
also be used for the estimate of the auto-
covariance. However, the discussion of 
estimation of spectra is outside of the scope of 
this paper.  
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4. ESTIMATES OF AN ENSAMBLE

4.1 Estimate of Mean and Variance 

Consider an ensemble of Nr records, each 
of which has Npj data points. The time 
increment t is assumed to be the same for all 
the records, which is the usual practice for both 
numerical simulations and model tests. The 
statistical weight for each record is expressed 
as follows: 

Nt
Np

W j
j (22)

Nt is the total number of points in the 
ensemble:  

Nr

j
jNpNt

1
(23)

The ensemble estimate for the mean value is 
calculated for all of the points:  
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(24)

jÊ  is the mean value estimate for a record j.
The ensemble estimate of the variance is: 
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 (25) 

jNp

i
aji

j
j Ex

Np
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1
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1

1'ˆ  (26) 

1
1

'
Nt

Np
W j

j (27) 

The weights (27) are slightly different from 
(22). However, as the number of points is quite 
large (thousands and tens of thousands), one 
can state that 

'jj WW (28) 

Note that the variance estimate in (26) is not 
exactly the same as the record variance 
estimate from (4), as it uses the ensemble mean 
estimate instead of record mean estimate. 

4.2 Estimate of Auto-Covariance Function 

As the records may have different length, 
the estimate of the auto-covariance function 
(18) is padded with zeros to facilitate averaging
across the record:

j

j

j

mNp

i
ajmiaji

j
jm

Npm
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ExEx

Np
R

j
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)ˆ])([ˆ]([

1]ˆ[
1

(29)

Like the data, the record estimate of the auto-
covariance is presented in a form of nested 
array, with j being the index of record, while m
is the index of the time lag. Since they have 
been padded by zeros, all of the record 
estimates of the auto-covariance function have 
the same length.  

The ensemble estimate of the auto-
covariance function is obtained by averaging 
across the records (assuming that if very short 
records are present in the ensemble, their 
statistical weight is small): 

Nr

j

mNp
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j

j

ajmiaji
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j
jmjma

j

Npmi

Npmi
ExEx

Nt

RWR

1 1

1

0

)ˆ])([ˆ]([

1

]ˆ[)(ˆ

 (30) 

Note that for m=0, equation (30) yields an 
expression identical to the formula for 
ensemble averaged variance. The averaging 
procedure significantly decreases the amount 
of “noise”, as illustrated in Figure 4. 
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Figure 4 Ensemble-averaged estimate of auto-
covariance function (Belenky et al., 2013) 

The formula for the ensemble averaged 
estimate for the process Y (the process of the 
centered squares) is similar to equation (30): 
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 (31) 

The ensemble-averaged estimate of auto-
covariance function of centered squared for an 
example set of roll data is plotted in Figure 5. 

Figure 5: Ensemble-averaged estimate of auto-
covariance function of centered squares 
(Belenky et al., 2013) 

4.3 Variances of Mean and Variance 

In order to get the variance of the 
ensemble-averaged mean estimate, the variance 
operator is applied to both sides of equation 
(24):

Nr

j
jj

Nr

j
jja EWEWE

1

2

1

ˆvarˆvarˆvar  (32) 

jÊvar  is the variance of the record mean 
value estimate, expressed with equation (19) 
where the auto-covariance function is 
estimated by equation (29). The cut-off point M
can be taken for the ensemble: 

)max( jNpM (33)

Substitution of equations (19), (22) and (29) 
into (32) leads to: 
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Here, the variance estimate (26) is used instead 
of the record estimate (4) for consistency with 
the auto-covariance estimate (29), so the 
ensemble mean estimate is used instead of 
record mean estimate.  

Equations (25), (28) and (30) can be used to 
re-write equation (34) in terms of ensemble-
averaged estimates: 

)(ˆ12ˆˆrâv
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A similar argument can be made for the 
ensemble-averaged variance of the variance 
estimate: 

Nr

i
jja VWV

1

2 var'ˆrâv (36)
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YaV̂  is the ensemble-averaged estimate of the 
variance estimate of the process Y (centered 
squares) based on the ensemble-averaged mean 
value estimate: 
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4.4 Alternative Method for Variances of 
Mean and Variance 

If the number of records is large enough, 
the variances of the mean and variance 
estimates can be computed without an auto-
covariance estimate. Consider equation (32) for 
the special case where all of the records have 
the same length, so all the weights are the same 
and equal to 1/Nr. The theoretical values of the
variances of the mean estimates jÊvar  are the
same for all the records. The variance of 
ensemble-averaged mean estimate for the 
records of the same length is expressed as: 

Nr
E

E j
a

ˆvarˆvar (39)

If the bias is assumed to be small, the estimate 
can be used instead of theoretical value: 
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j
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2
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Equation (40) can then be presented as: 
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The weight lacks a record index as all of the 
records are of the same length. However, this 
requirement is no longer necessary as the 
weight is inside the summation sign, so the 
record index j can be brought back: 
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j
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Formula (42) is equivalent to formula (35). 
To prove this, start by substituting (3) into 
(39):
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Using the well-known formula for the square 
of a sum: 
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Note the algebraic equivalence of the structure 
of equations (44) and (7). Applying the 
expansion (44) to equation (43) leads to: 
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The first term of (45) can be converted into a 
biased estimate of the record estimate and the 
second term can be converted into a non-
weighted estimate of the auto-covariance 
function (17): 

Nr

j

Np

m
jm

jjj

j
j

ajki

Np

i

iNp

k
aji

jj

j

Nr

j
j

j

j
a

j

j j

R
Np
m

NpNp
V

W

Ex

Ex
iNpNp

iNp

V
Np
W

E

1 1

2

1 1

1

2

]'ˆ[11"ˆ

ˆ][

ˆ][12

"ˆrâv
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"ˆ
jV  is the biased estimate of record variance. 
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Substitution of equation (22) into (46) yields 
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Introducing the cut-off point M defined by 
equation (33) completes the derivation 
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Equation (50) is identical to equation (35), 
taking into account that the large number of 
points and insignificant bias: 
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(51) 

Estimates of auto-covariance (29) and (48) 
differ by weighting.  However, they can still be 
considered to be approximately equal because 
the cut-off limits the influence of weighting, so 
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A similar argument can be made for the 
variance of the variance, allowing the 
following formula to be used for the 

calculation of the variance of the ensemble-
averaged variance estimate: 
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Further consideration of equation (53) can 
be found in Belenky et al., (2013). 

4.5 Confidence Interval for Mean and 
Variance Estimates 

The calculation of the boundaries of the 
confidence interval requires knowledge of the 
distribution of the estimates. This information 
is rarely available as distribution of the 
estimate is related with the distribution of the 
process itself.  For example, if a sample of 
independent random variables is known to have 
normal distribution, the estimate of the mean 
will have student-t distribution and the 
distribution of variance estimate is related to 2 
distribution.

The distributions of the processes of ship 
motion are not known. Even if the central part 
of the distribution can be approximated with 
normal for some motions and some ships, the 
mutual dependence of data points creates 
difficulties with using Student-t and  2 
distribution. On the other hand, the sample, i.e. 
ensemble of records, is presented with large 
number of points. The calculations of the 
estimates involve mostly summation, so it 
seems appropriate to invoke the Central Limit 
Theorem, which allows the distribution of the 
estimates to be assumed to be normal. 

This assumption presents no difficulties for 
the mean value, but may be a problem with 
variance estimate. The normal distribution 
supports negative values, while the variance 
and its estimate cannot be negative. Practical 
experience, however, shows that the 
confidence interval of variance is usually small 
enough to keep the low boundary of the 
variance far from zero. Nevertheless, the 
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possibility of numerical difficulties does exist, 
especially for smaller ensemble data volume. 

Once the assumption of normality of 
distribution of the estimate is accepted, the 
calculation of the boundaries of confidence 
interval is trivial: 
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K  is the 0.5(1+P ) quantile of a standard 
normal distribution (with zero mean and unity 
variance): 
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The confidence interval for standard deviation 
can be calculated using the “boundary” method 
(Bickel and Doksum, 2001): 

upuplowlow VV ;  (53) 

5. CONCLUSIONS AND FUTURE
WORK

The analysis of dynamic stability in ocean
waves is based primarily on irregular sea ship 
motion data obtained from model tests in the 
basin or time-domain nonlinear numerical 
simulations.  As the volume of data from these 
sources is, by necessity, limited, such analyses 
must account for uncertainties that result from 
the finite volume of data.   The present paper 
presents robust and easy-to-use formulae for 
the calculation of estimates of the mean value 
and variance, with confidence intervals, from 
such data. 

Ship motions in irregular waves are 
generally presented as an “ensemble” of 
records of time-domain data which has been 
computed or measured for the same 
environmental conditions, loading conditions, 
speed and heading. The records are 
independent of each other, but there is a strong 
dependence between data points within each 
record. Different records may have different 
length, so the natural data structure for an 
ensemble is a nested array (i.e. an array 
containing other arrays). 

The structure of the dependence (strong 
dependence within each record and 
independence of records to each other) does 
not affect the ensemble-averaged estimates of 
mean value and variance, but must be 
accounted for when evaluating the statistical 
uncertainty of those estimates.  The 
dependence within each record is accounted for 
through estimates of the auto-covariance 
function of the value of ship motion processes 
and their centered squares. As these quantities 
are estimated from a finite-length time series, a 
cut-off point is introduced to limit the possible 
influence of statistical “noise” caused by a 
deterioration of accuracy for large time lags. 
The estimation of the auto-covariance 
functions may be avoided if an ensemble 
contains a sufficient number of independent 
records. 

Future development may be expected in the 
relation of the statistical uncertainty with 
spectral characteristics. In particular, the 
smoothed spectral estimate can be seen as a 
natural source for the estimate of auto-
covariance function. Further test calculations 
are desirable in order to determine how many 
independent records are “sufficient” to use 
formulae (39) and (48) instead of (32) and (37).  

Future work may also include further 
testing of the formulae.  This would include 
creating or collecting a large set of ensembles 
from different experimental and numerical 
sources in order to see how well the computed 
confidence interval captures the expected 
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values of the ensemble estimates. The fraction 
of estimates falling within the confidence 
interval should be close to the given confidence 
probability. 
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