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Abstract 
 
This paper concerns with a methodology using a non-deterministic method to express the nonlinear dynamic rolling motion of 
small fishing vessels. As the rolling response system of the small fishing vessels for the waves is generally indicating strong 
nonlinearity and the effect of fishing operation for the ship motions is remarkable, proper estimation according to dynamic changes 
of ship condition is required to improve the safety on the seakeeping qualities. To apply the Neural Network model for the actual 
phenomenon, we have carried out improvements based on the tank tests.  
 
In this paper, main points of the improvements are as follows: (1) the accuracy of the estimation, (2) the selection of proper input for 
the model and (3) expansion of the framework from the estimation to the forecasting. According to the accuracies on the estimating 
for the full-scale experiments, we propose the practicability applying the Neural Network model to forecast the rolling motion of 
small fishing vessels under the actual fishing operation conditions. 

 
 
1. INTRODUCTION 
 
It is well known that strong nonlinear movements 
frequently emerge on the rolling motion of fishing vessels 
since complicated forces generated during fishing operation 
would act the dynamic response system. As majority of 
fishing vessels are doing fishing operation on the ship side 
using huge fishing gear, appropriate estimation of the 
seakeeping quality related to the rolling motion is so 
important to secure the safety of the fishing vessels. To 
avoid the instantaneous danger owing to large rolling 
motion under fishing operation condition, we intend to 
develop the roller equipments, which are located on a 
connecting point between the ship and fishing gear, with the 
autonomous supervising system adjusting the forces due to 
the fishing operation according to demand. In order to 
develop such safety system, we should adopt the proper 
forecasting model for the rolling motion based on the 

information of actual measurement. Further, decrease of the 
large rolling motion would be possible if a force controller 
network adjusting the force of the roller under the fishing 
operation attached to the forecasting model. 
To estimate the dynamic rolling response system of the 
fishing vessels under the fishing operation, we have studied 
application of a Neural Network model, which is one of the 
non-deterministic methods (1-5). In the 7th conference on 
STAB, based on the results on the estimation for tank tests, 
we showed the effectiveness of the Neural Network model 
to express the rolling response with the effect of the fishing 
operation (6-7).  
 
In this paper, to construct a forecasting model, we especially 
took notice of applying a recurrent Neural Network model 
to the rolling response system under fishing operation. 
Based on the forecasting with sufficient accuracy, we 
suggest that the recurrent Neural Network model is effective 
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as the forecasting model for the actual rolling motion under 
the fishing operation. 
 
 
2. EXPERIMENT 
 
We focused on the small fishing vessel for scallop hanging 
culture, which is one of the main fishing in Hokkaido, 
Japan. It is one of dangerous fishing since the fishing 
operation is always doing under mooring condition to the 
big scale culture facilities on the rough sea. General 
construction of the facilities of the scallop hanging culture 
and the fishing operation condition are shown in Fig. 1. 
 
Using two small fishing vessels for the scallop hanging 
culture, we have conducted the full-scale experiments in 
Uchiura-Bay, Japan from October 1999 to March 2001. 
One fishing vessel was the 7.9 GT type, and another was 
the 6.6 GT type. The measured variables were as follows: 
wave height, the six degrees of freedom of the movements 
and vertical mooring force for the facilities of the scallop 
culture. The co-ordinate system of the ship motions is 
shown in Fig. 2. Time interval between sampling was 0.05 
second. The wave height was defined as the relative 
displacement between the edge of bow ship and the sea 
surface and it was measured by a wave height meter of the 
capacity type. High frequency noise was eliminated from 
measured accelerations, which corresponded to the heaving, 
surging and swaying motions. 
 

 
Fig. 1. View of the fishing operation of the fishing vessels 
for scallop hanging culture 
 

 
Fig. 2.  Co-ordinate system 

 

 
Fig. 3. Time series of the rolling motion of the 7.9 GT 
fishing vessel under the fishing operation 
 
An example of time series of the rolling motion on the 7.9 
GT fishing vessel under the fishing operation for one hour is 
shown in Fig. 3. As series of the fishing operation, which 
fishermen hauled up the lines with scallops onto the deck 
and moved about 800 kg weight of net stuffed with scallops 
to the opposite side in order to adjust the heeling angle, were 
repeated four times, the ship condition was largely changed 
in a short period.  
 
The principal particulars are shown in Table 1 and the lines 
are shown in Fig.4 and Fig. 5. Also, the righting lever curves 
under light load condition are shown in Fig. 6 and Fig. 7, 
respectively. Considering the large transverse metacentric 
height GM and the righting lever GZ shown in the 
figures, both fishing vessels generally have sufficient static 
stability until the top of the bulwark will sink under sea level. 
As most small fishing vessels have relatively high bulwark 
to make up for the seakeeping quality, the static stability 
would become worse if the shipping water would happen. 
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Fig. 4. Lines of the 6.6 GT fishing vessel 

 
 

 
Fig. 5. Lines of the 7.9 GT fishing vessel 

 
 

Table 1. Principal particulars 

 
 

 
Fig. 6. Stability curve of the 7.9 GT fishing vessel 

 

 
Fig. 7. Stability curve of the 6.6 GT fishing vessel 

 
 
3. METHODOLOGY 
 
3.1. Structural model of the roll response 
 
Schematic diagram of structure of the Neural Network 
model is shown in Fig. 8. A single hidden layer 
feed-forward Neural Network model is applied for the 
estimation of the rolling motion measured on the full-scale 
experiments. The model is constructed with three layers: the 
input layer I, the hidden layer J and the output layer K. The 
estimated rolling motion R(t)  at the time t is expressed as 
the output from the model, and it is written as follows: 
 

R(t) = WJ jK1
ƒ(YJ j

(t) )Σ
j = 1

Mhidden

(1)  

 
Here, YJ j

(t)  in Eq. (1) may be written as: 
 

YJ j
(t) = WIiJ j

X Ii
(t)Σ

i = 1

Minput

(2)  

 
Here, Minput is the input number and M  is the unit 
number of the hidden layer. 

hidden

X Ii
(t) , 

( i = in1,..., M put ) are input variables. WIiJ j
 ( j = 1,…, 

) and M WJ jhidden K1
 are unknown synaptic weights 

between each layer. The function f (YJ j
(t)) in Eq. (1) is 
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defined by 
 

f (YJ j
(t)) = 1

1 + e– αYJ j(t)
(3)  

 
Where • is an unknown parameter. 
 
To estimate the optimal values for unknown 
parameters θ = (N L, α, WIiJ j

, WJ jK1
) , we 

minimized the following equation: 
 
MSR(θ) = 1

2N (R (l) – R(l | θ))2Σ
l = 1

N

+ 1
2N1 / 3

(RA ( j) – RA( j | θ))2Σ
j = 1

N1 / 3

(4)
 
Where NL is the number of learning data, N is the number of 
estimating data and N1/3 is the one-third numbers from top 
of all double amplitudes. R  (l =1,…, N) is the measured 
value at time point j and R

(l)
(l|θ

A

)  is the estimated value by 
the model. R  and RA( j) ( j|θ)  ( j =1,…, N1/3 ) are also the 
measured and the estimated value of the double amplitudes 
of the rolling motion, respectively. Then the MSR is defined 
as the weighted value between the mean squared residual of 
the estimation MSE and the mean squared residual of the 
significant double amplitude MSEA. To optimize θ , we 
used the modified back-propagation method based on the 
gradient descent algorithm as follow: 
 

W (k + 1) = W (k) – η
∂Ep(W)
∂W W = W (k)

,

η = {1.0 (otherwise)

0.05 (Rp > 0.0 and Rp > Rp,
Rp < 0.0 and Rp < Rp) (5)

 
 

 
Fig.8. Structure of the multi-layered feed-forward    network 
model 
 
where W (k) is the connection weight at the kth iteration, and 
•is the step width of renewal varied in relation to the 
residual function Ep(W)  between the estimated rolling 
motion Rp  and the value of teacher signal Rp  at the time 
point p (8). 
 
 
3.2. Forecasting model of the rolling motion 
 
In this paper, we adopted a recurrent Neural Network model 
in order to forecast the rolling motion. The model was 
added the feed back of the forecasting error to the 
feed-forward Neural Network model. Schematic diagram 
of structure of the model is shown in Fig. 9. As the feed 
back will vanish after learning, it looks the conventional 
feed-forward Neural Network model on the estimating 
shown in Fig. 8. The discrete recurrent Neural Network 
model is written as follow: 
 
 

YJ j
(t) = WIiJ j

(τ)X Ii
(t – τ)Σ

i = 1

Minput

+ WIMinput + 1
J j

(τ)X IMinput + 1
(t) (6)

 

 
Where X IMinput + 1

(t) = R(t) – R(t) ,•  is time lag, 

WIiJ j
(τ)  is the weight with time lag•. 
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Fig.9. Structure of the recurrent network model on the 
learning stage 
 
 
4. RESULT 
 
4.1. Characteristics of the rolling motion 
 
Let us investigate the time varying structure of each motion 
measured on the full-scale experiments. The first case is the 
7.9 GT fishing vessel. Sea condition was right-bow waves 
with swell encountered from the right-guarter sea and the 
significant wave height H1/3 was 0.74m. She moored her 
right side to the culture facilities with encountered the wave 
on the same side. The changes of spectra of the wave height, 
rolling motion and vertical mooring force for the facilities of 
the scallop culture for every 60 seconds, which correspond 
to 1200 samples, are shown in Fig. 10(a)-(c). Here, the 
horizontal, the longitudinal and the vertical axes indicate 
time(s), circular frequency • (rad , and spectral 
density functions of the wave height S(•) (m , the 
mooring force S(•) (N

⋅s– 1)
2⋅s)

2⋅ s)  and the rolling motion S(•) 
(deg2⋅ s) , respectively. The measured time series can be 
regarded as stationary within the time interval. As for the 
wave height, it looks that the maximum value of the power 
largely changes although the dominant frequency slightly 
changes over time. On the other hand, in case of the vertical 
mooring force and the rolling motion, there are complicated 
powers in the wide frequency range. Then the features of 
spectra on the rolling motion and the mooring force are 
clearly different from those of the wave height. 
 
The second case is the 6.6 GT fishing vessel. The mooring 
condition is different from the case of the 7.9 GT fishing 
vessel since the mooring side and encountering direction of 

the wave are opposite. It was reported that the roll response 
was complicated under such mooring condition (9). In the 
experiment, wave was left-quartering and the significant 
wave height H1/3 was 0.59m. The changes of spectra are 
shown in Fig. 11(a)-(c). Although mooring force itself is 
weak because the scallops are still small on the initial stage 
of the culture, there are powers in the low frequency range 
in addition to the existence of power on the same frequency 
range of the wave height. Time varying configuration of the 
power between the wave height and the rolling motion is 
different, even though the frequency range with the power is 
in almost same. It is regarded that the rolling motion is large 
nevertheless the wave height is small and the mooring force 
is weak. 
 

 
Fig. 10(a). Change of power spectra of the wave height, H1/3 
= 0.74m 
 

 
Fig. 10(b). Change of power spectra of the vertical mooring 
force on the 7.9 GT fishing vessel 
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Fig. 10(c). Change of power spectra of the rolling motion 
on the 7.9 GT fishing vessel 
 

 
Fig. 11(a). Change of power spectra of the wave height, H1/3 
= 0.59m 
 

 
Fig. 11(b). Change of power spectra of the vertical mooring 
force on the 6.6 GT fishing vessel 
 

 

 
Fig.11(c). Change of spectra of the rolling motion on the 6.6 
GT fishing vessel 
 
4.2. Construction of the model and estimation of the roll 
response 
 
Considering the movement of the ship on the sea, one of 
main input induced the rolling motion is the wave. To apply 
the Neural Network model to the rolling motion, we 
adopted five items (wave height, rolling, yawing and 
heaving motions, and vertical mooring force) as the input 
variables and the model expressed the effectiveness for the 
estimation of the roll response system (6-7). Although wave 
height is essential to estimate the rolling motion, rational 
selection of the input is necessary to widely apply for the 
practical phenomenon. Then we conducted the 
restructuring of the model related to the proper input 
variables. 
 
The accuracy of the estimation related to the input is shown 
in Table. 2. This is a result of the modeling for the actual 
measurement used the 7.9 GT fishing vessel shown in Fig. 
10. To assess the accuracy of the estimation, MSR estimated 
by the model with the wave height is defined as the standard. 
Firstly, we tried to estimate the roll response only using the 
three variables: the vertical mooring force and the 
accelerations in Y and Z - directions measured at the center 
of gravity. Note that measured accelerations included the 
effect of the gravity according to the inclination. MSR is 
worse than the standard. In the case of the five variables that 
are added the accelerations in Y and Z - directions with time 
lag 1.40 seconds, which almost corresponds to the half 
natural rolling period of the ship ( Ts = 2.91 seconds), MSR 
was considerably improved in comparison with that utilized 
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the wave height for the input. Then, we adopted the 
structure of the input to the model. An example on the 
estimation of the rolling motion is shown in Fig. 12. Where 
the solid line indicates the measured rolling motion and the 
dotted line indicates the estimation. The optimized 
parameters are •= 1.70 and Mhidden = 4. The estimation 
indicates enough accuracy related to the rolling motion at 
the inclining side acting the mooring force.  
Another comparison with the accuracy is shown in Table 3. 
This is a result of the modeling for the experiment used the 
6.6 GT fishing vessel shown in Fig. 11. Here, the natural 
rolling period of the ship Ts is 2.86 seconds. In the same 
result as the estimation of the 7.9 GT fishing vessel, it is clear 
that the model used the five variables on the input indicates 
proper estimation. An example on the estimation of the 
rolling motion is shown in Fig. 13. The optimized 
parameters are •= 0.94 and Mhidden = 3. It looks that the 
Neural Network model properly estimates the roll response 
structure because there is few underestimates. Note that the 
accelerations for the estimation were measured on the deck 
below the mooring point to the culture facilities since the 
model used the accelerations measured at the center of 
gravity could not estimate the rolling motion properly. In the 
conditions that the mooring force is weak, the model could 
not get the information related to the rolling motion from the 
accelerations measured at the center of gravity.  
 

Table 2. Comparison with the accuracy of the estimation 
related to the input variables, 7.9 GT fishing vessel 

    

INPUT VARIABLE MSE MSER MSR 

Mooring force, Acc-Y, Acc-Z 2.655 1.537 2.096  

Mooring force, Wave, Acc-Y, Acc-Z 1.471 2.312 1.891  

Mooring force, Acc-Y, Acc-Z, Acc-Y(7), Acc-Z(7) 1.812 1.290  1.551  

Here, Acc-Y(7) and Acc-Z(7) are the accelerations in the Y and Z - directions with time lag 
corresponded to the half natural rolling period of the ship, respectively 
 
 

 
Fig.12. Estimation of the roll response on the 7.9 GT fishing 
vessel, •=1.70, Mhidden = 4 and MSR =1.551 
 
 

Table 3. Comparison with the accuracy of the estimation 
related to the input variables, 6.6 GT fishing vessel 

    

INPUT VARIABLE MSE MSER MSR 
Mooring force, Acc-Y, Acc-Z 4.886 2.288 3.587  

Mooring force, Wave, Acc-Y, Acc-Z 4.423 1.638 3.030  

Mooring force, Acc-Y, Acc-Z, Acc-Y(7), Acc-Z(7) 3.695 1.367 2.531  

Here, Acc-Y(7) and Acc-Z(7) are the accelerations in the Y and Z - directions with time lag 
corresponded to the half natural rolling period of the ship, respectively 
 

 
Fig.13. Estimation of the roll response on the 6.6 GT fishing 
vessel, •=0.94, Mhidden = 3 and MSR =2.531 
 
 
 
4.3. Forecasting of the rolling motion by the recurrent 
Neural Network model 
 
Two kinds of forecasting accuracies of the rolling motion by 
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the recurrent Neural Network model with forecasting point 
ranging from 0 to 10 steps ahead are shown in Fig. 14 and 
Fig. 15, respectively. Here, one step of the forecasting point 
corresponds to 0.20 seconds. The input on the case shown 
in Fig. 14 is four variables: the mooring force, the wave 
height, and the accelerations in the Y and Z - directions. On 
the other hand, the input on the case shown in Fig. 15 is five 
variables: the mooring force, the accelerations in the Y and 
Z - directions, and the same accelerations with the half time 
lag of the natural rolling period. On the both cases, the 
forecasting accuracies of the rolling motion with the 
forecasting time ranging from 1.00 to 1.40 seconds are 
better than those of the estimation at the same time of the 
input. This time range getting nice accuracy of the 
forecasting corresponds to the half natural rolling period of 
the fishing vessel. Further, the forecasting accuracy on the 
case of four variables is almost equivalent to that on the case 
of five variables without the wave height. It means that the 
model can forecast the rolling motion only using the 
mooring force and the accelerations in the Y and Z - 
directions. An example on the forecasting of the rolling 
motion at six steps ahead is shown in Fig. 16. The 
optimized parameters are •=1.03 and Mhidden =5. Since 
there is few underestimating and time lag on the forecasting 
with MSR = 1.338, it looks that the recurrent Neural 
Network model properly forecasts the rolling motions under 
fishing operations. It is suggested that this non-deterministic 
model can be sufficiently applied to the practical rolling 
motion as the forecasting model. 
 

 
Fig.14. Forecasting error of the recurrent model with respect 
to the forecasting point, the input variables = 4 
 

 
Fig.15. Forecasting error of the recurrent model with respect 
to the forecasting point, the input variables = 5 
 

 
Fig.16. Forecasting of the rolling motion on the 7.9 GT 
fishing vessel at 6 steps ahead (1.20 second),•=1.03, Mhidden 
=5 and MSR = 1.338 
 
 
5. CONCLUDING REMARKS 
 
The conclusions in this study are summarized as follows: 
 
1. On applying the feed-forward Neural Network model for 
the full-scale rolling motion under the fishing operation 
condition, it is confirmed that the non-deterministic model is 
practically effective to estimate the roll response system of 
the small fishing vessel acting the complicated outer force. 
 
2. As the result of simplification related to the input variables, 
the roll response system could be estimated by only five 
variables as the input: the vertical mooring force, the 
accelerations in the Y and Z – directions and same 
accelerations with time lag corresponded to the half natural 
rolling period. Then, the estimated rolling motions are 
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independent on the wave height. It is suggested that the 
accelerations used for the estimation should be measured at 
the mooring point. 
 
3. The recurrent Neural Network model can forecast the 
rolling motion under the fishing operation condition with 
sufficient accuracy. The input is five variables similar to the 
estimation of the rolling response system. The time range of 
forecasting is until the half period ahead of the natural rolling 
period of the fishing vessel. 
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