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Abstract 
 
The paper presents some background for an analysis of the risk of severe parametric roll motion for 
a ship operating in head seas. This background includes a consideration of basic probabilistic 
qualities of parametric roll in head seas: ergodic qualities and distributions, since these results are 
necessary to establish a method of prediction of extreme values. The ship motions that generate 
parametric excitation, heave and pitch, have also been studied in this analysis.  
 
The post-Panamax C11 class container carrier was chosen for analysis, since a vessel of this type is 
known to have suffered significant damage in an incident attributed to severe parametric roll. It was 
shown that despite large-amplitude of motion, pitch and heave retain their ergodic qualities and 
normal character of distribution, while the roll motions are clearly non-ergodic and do not have a 
normal distribution. The analysis is built upon the numerical simulation of ship motion in head seas 
using Large Amplitude Motion Program (LAMP).  
 
The paper also considers the effectiveness of anti-rolling devices in mitigating parametric roll by 
suppressing the parametric excitation. It was shown with numerical simulation that correctly tuned 
U-tube type of anti-rolling tank has to potential to reduce the occurrence of parametric roll and 
significantly increase the stability and safety of large modern container carriers. 
 
 
1. INTRODUCTION AND BACKGROUND 
 
The phenomenon of parametrically induced roll 
has been known to naval architects for over 
fifty years [1]. Initially, it was thought to be a 
phenomenon of following seas and was of 
significance for smaller, high-speed 
displacement vessels such as some fishing 
boats and seagoing tugs.  In recent years, 
however, parametric roll has been observed in 
large seagoing ships, particularly container 
ships operating in head seas. A significant 
recent casualty is described in [1] in which a 
large number of containers were lost from a 
post-Panamax container ship caught in a severe 

storm in the North Pacific. A number of other 
container losses have occurred and are thought 
to be attributable to the same cause. 
 
When a ship sails in head or following seas, the 
geometry of the underwater hull is constantly 
changing with time as a result of the wave 
surface along the hull as well as the pitching 
and heaving motions. In general, stability is 
greater than that in still water when a wave 
crest is at bow and stern, and it is diminished 
relative to still water when a crest is amidships.  
The effects are most pronounced in waves of 
length about equal to the ship length, and 
increase with increasing wave steepness. In 
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pure head or following seas, there is no direct 
wave-induced rolling moment such as would 
exist if the waves approached the ship from any 
other direction. 
 
Nevertheless, if the period of wave encounter is 
approximately one-half the natural period of 
roll, a rolling motion can exist even in the 
absence of a direct roll exciting moment. This 
is a kind of dynamic motion instability and is a 
consequence of the equation of rolling motion 
in the presence of the periodically varying 
stability. Specifically, rolling motion can be set 
up if the stability variations occur at the critical 
period ratio of ½ and there is some arbitrarily 
small initial disturbance. The disturbance 
always exists in natural waves because of 
directional spreading. Under most conditions, 
the roll is quickly damped out and is of no 
consequence. 
 
In some conditions of high seas, however, the 
proper ship speed and heading and for certain 
hull form characteristics, the rolling motion can 
grow to large proportions. Capsizings have 
been recorded, particularly of small high-speed 
fishing vessels when heavily loaded in 
following seas. The head sea parametric roll is 
a more recently identified phenomenon and 
seems especially likely to occur in the case of 
large container ships as a result of certain 
features of their hull form that lead to 
especially pronounced variations in stability as 
the ship sails through head or following seas. 
 
This paper describes an ongoing work carried 
out and sponsored by American Bureau of 
Shipping. Since the work is ongoing, it is not 
meant to offer a complete solution but rather to 
continue the discussion started in [1]. 
 
 
2. NUMERICAL SIMULATIONS 
 
Since the parametric roll phenomenon is 
caused by time variation of transversal 
stability, the numerical simulation method must 

be able to adequately model the changes of 
geometry of immersed part of the hull due to 
large waves and ship motions. Following [1], 
the simulations were made using the Large 
Amplitude Motion Program (LAMP) with its 
“approximate body nonlinear” formulation. In 
this formulation, which is also referred to as 
the LAMP-2 approach, the hydrostatics and 
Froude-Krylov forces are computed over the 
instantaneous wetted hull surface while the 
perturbation potential, which includes radiation 
and diffraction effects, is computed over the 
mean wetted surface. Since it is the nonlinear 
hydrostatics that is “responsible” for the 
parametric roll phenomenon, the use of the 
mean waterline formulation is justified. This 
formulation provides a substantial speed-up of 
calculations as compared to the fully body-
nonlinear approach, which is especially critical 
when working with stochastic processes. 
 
In brief, LAMP is a time domain simulation 
system based on a 3-D potential flow panel 
solution of the wave-body interaction problem 
and incorporating flexible models for control 
systems, green-water-on-deck, viscous forces, 
and other effects. The latter feature is very 
important for adequate modeling of parametric 
resonance, since the viscous roll damping 
model can be tuned based on the results of the 
model test [1]. As was shown in [1], roll 
damping, including nonlinear terms in roll, is a 
key factor in predicting roll amplitude in the 
regime of parametric resonance. 
 
A more complete description of the LAMP 
System is given in another paper at this 
conference [2], while [3] and [4] contain details 
on its theoretical background. Reference [5] 
describes recent developments and applications 
of the LAMP System. 
 
 
3. SHIP CONFIGURATION 
 
The ship chosen for the present analysis is the 
C11 class container carrier that lost many 
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containers in a casualty involving large roll 
motions in severe head seas, and was the 
subject of the experimental and numerical 
study described in [1]. Fig. 1 presents a general 
view of her hull geometry. 

 
Fig. 1. Hull of post-Panamax container carrier 
 
 
The ship has large bow flare and an 
overhanging stern, exactly the geometry 
features that can invoke parametric roll. The 
large bow flare and overhanging stern result in 
significant changes to the waterplane as the 
ship pitches and heaves in waves.  When the 
encounter period is close to ½ of the natural 
roll period, these changes provide the 
parametric excitation leading to a rise of roll 
motions [1]. How large the roll becomes is 
determined by nonlinear factors, including the 
shape of the GZ curve and nonlinear roll 
damping. That is why body nonlinear 
hydrostatics and a correct model of roll 
damping are critical for evaluating extreme 
parametric roll motions. Here an empirical 
model of roll damping, tuned and validated 
with experimental results, is used [1]. 
 
 
4. PARAMETRIC ROLL IN REGULAR 
WAVES 
 
Before proceeding with parametric roll of a 
ship, we would like to consider the Mathieu 
equation, which is the simplest mathematical 
model of parametric resonance. It is a linear 
ordinary differential equation with periodic 
coefficient 
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where p is related to the square of the ratio of 
the forcing frequency to the natural frequency 
and the parameter q plays the role of the 
amplitude of the parametric excitation. 
Depending on the values of parameters p and q, 
the solution of Mathieu equation might be 
decaying, periodic (also known as Mathieu 
function) or rising infinitely. An example of the 
rising (or “unstable”) solution is illustrated by 
phase trajectory shown in Fig. 2.  
 
An Ince-Strutt diagram in fig. 3 shows zones 
where combinations of the parameters p and q 
in the Mathieu equation result in such an 
unstable solution. There are several zones of 
instability: the first zone starts from p=0.25 and 
corresponds to a natural period exactly twice 
the period of parametric excitation. 
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Fig. 2. Phase trajectory of unstable solution of 
the Mathieu equation (p=2.5, q=0.2, damping 
factor 0.05, initial displacement 0.01) 
 
 
Adding a linear damping to Mathieu equation 
does not limit the amplitude of its solution. 
Instead it “lifts” the zone boundaries and 
creates a “threshold” for the amplitude of 
parametric excitation (q) which results in a 
rising solution. 
 
 
 
 
 



8th International Conference on 
the Stability of Ships and Ocean Vehicles 

Escuela Técnica Superior de Ingenieros Navales 
 328 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Ince-Strutt diagram 
 
 
This is why it is possible to use Mathieu 
equation for modeling the occurrence raised 
motions caused by parametric excitation, but 
not for evaluating how large the parametric 
oscillations might develop.  To do so, nonlinear 
damping or stiffness terms must be added to 
“stabilize” the rising oscillations.  
 
Numerical simulations for the ship in head, 
regular waves can be used to illustrate the 
mechanics of parametric roll. For waves with 
an encounter period away from ½ the roll 
natural period or with insufficiently large 
amplitude, the roll motion will remain small 
even if a fairly large roll perturbation is 
introduced. For waves in the proper frequency 
range, a sufficiently large wave amplitude will 
induce large rolling motion with an arbitrarily 
small roll perturbation. 
 
The development of roll motion shown in Fig. 
4 is typical for the parametric resonance 
regime: the roll motion takes relatively long 
time to start, increases rapid, and finally 
stabilizes at steady-state amplitude. 
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Fig. 4. Development of parametric roll in 
regular waves (wave amplitude 4.2 m, 
frequency 0.44 s-1, speed 10 knots) 
 
 
Fig. 5 shows a steady-state regime of 
parametric roll along with time-synchronized 
heave and pitch motions. It is very clear that 
roll period is twice that of heave and pitch, 
which corresponds to the first zone of 
instability in the Ince-Strutt diagram (Fig. 4). 
 
It is peculiar that the steady-state roll motions 
shown in Fig. 5 are not sinusoidal. This can be 
seen especially clearly in Fig. 5, which plots 
the phase trajectory of the roll in the parametric 
roll regime. 
 
The deviation from the sinusoidal form can be 
explained by two factors. First, there is the 
nonlinearity of the damping and restoring terms 
with roll: at an amplitude close to 30 degrees, 
their influence is likely to be significant (see 
GZ curve in [1]). Secondly, the parametric 
response, even in the simplest case described 
with the Mathieu equation, might be far from 
sinusoidal (see Fig. 3). 
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Fig. 5. Steady state parametric roll, 
pitch, and heave 
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Fig. 6. Phase trajectory of parametric roll 
 
 
Some deviation from sinusoidal form can be 
observed in the heave and pitch motions as 
well, but they are visually much smaller. The 
phase trajectories of heave and pitch are shown 
in Figs. 7 and 8, respectively. 
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Fig. 7. Phase trajectory of heave in the regime 
of steady state parametric roll 
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Fig. 8. Phase trajectory of pitching in the 
regime of steady state parametric roll 
 
 
5. PARAMETRIC ROLL IN IRREGULAR 
WAVES 
 
The large amplitude of the roll response 
encountered in a parametric resonance regime 
might significantly influence the probabilistic 
characteristics of rolling. The deviation from 
sinusoidal form of the steady state parametric 
roll, as discussed above, might also be 
considered a sign of non linearity. 
 
The conventional models of ship behavior in 
irregular seas used by most seakeeping and 
stability applications are not always valid. 
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These models assume ergodicity (a quality of 
stochastic process that allows estimation of 
statistics using one long realization) and a 
normal distribution of rolling. However, these 
assumptions do not always have a solid 
background. 
 
Observations and records have validated the 
assumption of normal distribution and 
ergodicity of waves at sea. If a ship is 
considered to be a linear system [6], the 
Weiner-Khinchin theorem states that the ship 
response will also be normal and ergodic. If, 
however, nonlinearity is involved, then this 
assumption no longer holds. 
 
Numerical simulations [7, 8, 9] and model 
testing [9] have shown that large amplitude roll 
cannot be considered ergodic. Roll distribution, 
however, might be assumed normal for low-
built ships; if a ship has high freeboard and GZ 
has S-shape, roll distribution might not be 
Gaussian. 
 
 
5.1 Model of Irregular Waves 
 
In the irregular wave analysis, only head long-
crested seas are considered so that roll is 
excited only by coupling through pitch and 
heave. Following [1], a JONSWAP spectrum, 
shown in Fig. 9, was created for a wind 
velocity of 30 m/s, a fetch of 100nm, and peak 
enhancement factor (γ• •  of 1.39. This spectrum 
produces a significant wave height (H1/3) of 
about 9 m. 
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Fig. 9. JONSWAP Spectrum (γ=1.39, 
Wind velocity 30 m/s, Fetch 100 nm) 
To create a discrete wave model, 200 wave 
components were created with equal frequency 
intervals over a range from 0.245 s-1 to 1.04 s-1; 
providing 26 minutes of simulation time before 
the second peak of the correlation function. 
The incident wave elevation is defined by the 
well-known form of a Fourier series: 

 ( )∑
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ϕ+ω=ζ
N
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iiiw tat
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where ωi is the frequency set, amplitudes ai are 
defined from the spectrum, and phase shift ϕi 
are random numbers with uniform distribution. 
Each realization of waves is generated with a 
new set of random phase shift. A total of 50 
wave realizations were created and analyzed 
for the present study. 
 
 
5.2 Predicted Roll Response 
 
For each of the wave realizations, a 26 minute 
LAMP simulation was made to evaluate the 
ship’s response while running into the waves at 
10 knots. Fig 10 shows the predicted roll 
response for the first realization. 
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Fig. 10. Roll response in irregular long-crested 
waves (Realization 1) 
 
 
The above result is similar to those published 
in [1] and show a highly pronounced group 
structure. The roll response to the 2nd 
realization (Fig. 11) shows a change in the 
sequence of groups and an interval with low 
roll angle, where parametric roll is not 
observed. After some time, however, 
parametric roll it is again excited.  
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Fig. 11. Roll Response in irregular long-crested 
waves (Realization 2) 
 
 
5.3 Stationarity 
 
The statistical characteristics of waves at sea 
change with time. Formally, this means that 
waves cannot be considered as a stationary 
stochastic process. The changes of these 
characteristics, however, are typically slow in 
comparison with the wave period. This allows 
a hypothesis of quasi-stationarity to be 
introduced, assuming that the waves could be 
considered as a stationary process within a 
certain time, during which the changes of the 
statistics can be neglected. This time, 
commonly referred as “period of quasi -
stationarity,” lasts from half an hour to several 
hours. Extreme values observed during this 
time are defined in seakeeping analysis as 
“short term extremes.”  
 
Considering parametric roll within the period 
of quasi-stationarity, we have good reason to 
assume that it is a stationary process, as long as 
the speed, heading, and loading conditions of 
the ship are not altered. 
 
 
5.4 Ergodicity: Visual Check 
 
Ergodicity is only applicable to stationary 
stochastic processes. If the process is ergodic, 
its statistical characteristics could be estimated 
from one sufficiently long realization, rather 
than the whole set of realizations required for 
non-ergodic processes. This means that for an 
ergodic process, the following equality of mean 
values takes place: 
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where f(x) is probability density. The same 
could be written for variance estimates: 
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Consider a number of realizations for the same 
stochastic process. As a consequence of 
equations (3) and (4), statistical characteristics 
estimated for different realizations of the 
ergodic process must be essentially the same. 
So, if the statistical characteristics are 
evaluated cumulatively over time, they would 
form a set of converging curves. Such a set is 
shown in Fig. 12, which plots the variance 
estimate of wave elevation at the fixed origin 
for a number of different realizations. 
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Fig. 12. Variance estimate for wave at 
fixed origin 
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Fig. 13. Variance estimates for pitch 
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Fig. 14. Variance estimates for roll in 
parametric regime 

 

Fig. 12 clearly shows the tendency of 
convergence. Analogous behavior was 
observed for the encounter waves, heave and 
pitch motions, and heave and pitch velocities. 
For example, Fig 13 shows the behavior of 
variance estimates for pitch. 
 
A very strong tendency to converge has been 
found for mean values of all studied processes, 
including roll angle and roll velocity in the 
regime of parametric resonance 
 
Estimates of variances in roll angle and 
velocity, however did not converge (see Fig. 
14), which might be considered as sites of non-
ergodicity. 
 
 
5.5 Ergodicity: Confidence Intervals 
 
The mean values and variances calculated with 
any finite data volume are only estimates. 
These estimates actually are random numbers, 
because deviation from the theoretical value is 
random. Therefore, there is always a possibility 
that a difference between roll variances 
estimated on different realizations is caused by 
finiteness of available data. To evaluate the 
likelihood that observed behavior is (or is not) 
caused by statistical uncertainty, confidence 
intervals were used, following a similar 
analysis applied in [10] and [11]. 
 
The confidence interval is a range that contains 
the true value of mean value, variance, or any 
other probabilistic characteristic, with a given 
confidence probability β. Here β=0.9973 is 
used. 
 
Following standard statistical procedure, the 
distribution of the random deviation of the 
estimated value from the true value is assumed 
to be Gaussian (this does not imply Gaussian 
distribution for the analyzed stochastic 
process). Then the confidence interval half-
width for estimate Z (mean value or variance) 
can be calculated as: 

de
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 ])[],[,( ZVZmPZ inv β=∆  (5) 
where Pinv is the inverse Gaussian cumulative 
probability, m[Z] is the  mean value of the 
estimate, and V[V] is the variance of the 
estimate. 
 
As can be seen from equation (5), in order to 
calculate the width of the confidence intervals, 
it is necessary to evaluate the mean value and 
variance of the statistical characteristics, which 
are the mean values and variances of each 
realization. To avoid confusion, all estimates of 
realizations bear a subscript r and all estimates 
of estimates are marked with a tilde (~) above. 
 
It is proven in mathematical statistics that the 
mean value is the estimate of mean value for 
itself. The variance of the mean value is related 
to the estimated variance of the realization and 
the number of points: 
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where mr and Vr are mean value and variance 
estimated for one realization and Nr is the 
number of points in the realization. 
 
The mean value and variance of the variance 
estimate can be calculated as follows: 
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where M4r is the fourth central statistical 
moment of the realization. This value can be 
estimated directly from the realization; 
provided a relatively large number of data 
points are available (the accuracy of the 
estimation of the 4th moment on a limited 
amount of statistical material is low): 
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where Xi are wave elevations or ship motion 
displacements obtained from the simulation. 
Each realization was simulated with 10,000 
points, an amount that can be considered large 

enough for reasonable evaluation of the 4th 
moment.  
 
The confidence intervals for each realization 
are shown in Figs. 15-18. Each figure contains 
two diagrams: one for mean value and one for 
variance. Each diagram shows an estimate for 
each realization with corresponding confidence 
interval. When the confidence intervals for 
different realizations have an overlap, the 
difference between realization estimates might 
well be treated as statistical error. When such 
overlap does not exist, the likelihood of the 
above hypothesis can be rejected. 
 
As clearly seen in Figs. 15-18, the confidence 
intervals overlap for all mean values but do not 
overlap for the estimates of roll variances. 
These results give the visual impression that, in 
the regime of parametric rolling in head seas, 
roll is not ergodic, despite the fact that the ship 
motions related to parametric excitation (heave 
and pitch) seem to be ergodic. 
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Fig. 15. Realization estimates and confidence 
intervals for wave at fixed origin 
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Fig. 16. Realization estimates and confidence 
intervals for heave motion 
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Fig. 17. Realization estimates and confidence 
intervals for pitch motion 
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Fig. 18. Realization estimates and confidence 
intervals for roll motion 
 
 
5.6 Quantification of Ergodicity 
 
Comparing overlaps of variances of waves, 
heave, pitch, and roll in Figs. 15-18 or 
converging tendency of waves, pitch, and roll 
in Figs. 12-14, it is natural to observe that the 
wave elevations are “most ergodic”, pitch and 
heave are “less ergodic”, and roll is not ergodic 
at all. Following [10], we tried to quantify this 
observation. 
 
The absence or presence of ergodicity stated 
above is based on the difference in variances 
estimated on different realizations. Considering 
these estimates as random values, differences 
between them can be characterized with their 
variance, which is actually a measure of 
dispersion. 
 
Considering variance estimated on different 
realizations as random values, it is possible to 
express their variance as: 
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where Vrj is the variance of j-th realization, n is 
the number of realizations, and Ve is the mean 
value of realization variance estimates 
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As is obvious from equation (10), Ve has a 
meaning of variance estimated over the entire 
set of realization and does not depend on 
whether the process is ergodic or not. 
 
Variance of the variance (equation (9)), 
however, is not exactly the same as that defined 
with equation (7). The latter one characterizes 
the dispersion of the estimate due to the finite 
number of points in realization, while the value 
defined by equation (9) is related to all 
realizations and presumes formal treatment of 
each estimate as a separate random number not 
related to the amount of statistical data in each 
realization. 
 
The relative measure of the dispersion due to 
non-ergodicity could therefore be expressed as: 
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This value characterizes dispersion of the 
realization estimates around the ensemble 
estimate and can be used as the criterion for 
practical non-ergodicity. Table 1 shows the 
computed values of this criterion for the results 
of the 50 numerical simulations. 
  
The nearly ten-fold increase in the value of 
practical non-ergodicity criterion for 
parametric roll and roll velocity in comparison 
to the values for pitch and heave (which are 
directly related to the parametric excitation) 
gives sufficient background to reject the 
hypothesis of ergodicity for roll and roll 
velocity. 
  
At the same time, pitch and heave still can be 
considered as ergodic processes. The practical 
non-ergodicity criterion (equation (11)) can 
also be perceived as a relative error; 3-4 % of 
error can be considered as acceptable accuracy. 

 
Table 1  

Process Value of 
Criterion, % 

Wave elevation at fixed origin 1.4 
Wave elevation at center of 
gravity of the ship (encounter 
wave elevation) 

3.3 

Heave displacement 3.8 
Heave velocity 3.2 
Pitch angle 4.6 
Pitch velocity 4.6 
Roll angle 30.5 
Roll velocity 31.4 

 
 
5.7 Probability Distribution 
 
The next issue to address is probability 
distribution. It is widely accepted that wave 
elevation has normal distribution; it is 
attributed to the fact that many different factors 
influence wave generation. The Fourier series 
model of irregular wave (Equation 2) 
reproduces normal distribution very well. Fig. 
19 shows a histogram of wave elevation at the 
global origin, calculated from all 50 
realizations used in this study. On top of this is 
plotted the theoretical Gaussian distribution 
calculated from the mean value and variance 
estimate for the whole set of realizations. As 
shown in Fig. 19, the theoretical and statistical 
distributions are so close that the curve can 
barely be seen. 
 
It is well known from probability theory that a 
linear dynamical system being excited by a 
normal process produces a normal response. 
So, the character of the probability distribution 
is known for linear ship motion analysis, but it 
is a problem for large-amplitude motions. 
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Fig. 19. Probability distribution for wave 
elevation at fixed origin  
 
 
Previous studies of large-amplitude roll motion 
in beam seas [7, 8] (see also review [9]) have 
shown that the nonlinear roll response might be 
normal or not normal, depending on the shape 
of the nonlinear term in the most statistically 
significant range. 
 
The heave and pitch motions, despite being 
calculated with nonlinear hydrostatic and 
Froude-Krylov forces (LAMP-2 formulation), 
do not show any visible deviation from 
Gaussian distribution (see Figs. 20 and 21). 
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Fig. 20. Probability distribution of heave 
motions 
 
 
The fact that pitch and heave in this case are 
nonlinear is beyond a doubt: the very reason 
for parametric roll is the changing the geometry 

of the hull’s wetted portion, which can be 
reproduced only with nonlinear heave and 
pitch. However, this nonlinearity did not create 
significant non-ergodicity nor a deviation from 
Gaussian distribution. 
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Fig. 21. Probability distribution of pitch 
motions 
 
 
The distribution of the roll response from these 
realizations is shown in Fig. 22, and it is quite 
far from normal: the peak of the distribution is 
significantly sharper. 
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Fig. 22. Probability distribution of roll motions 
 
 
The reason why rolling does not follow 
Gaussian distribution might be sought in two 
directions. First, it could be just inherent roll 
nonlinearity expressed in damping and GZ 
curve; a similar shape of roll distribution was 
observed in beam seas [7, 8]. Secondly, it 
could be the shape of parametric roll time 
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history (see Fig. 3) and the stronger-than-usual 
group structure that contributes to the 
parametric roll distribution’s deviation from 
Gaussian. 
 
 
6. Probabilistic Qualities of Parametric Roll 
Response in Head Seas: Possible 
Applications 
 
One of the principles of presenting scientific 
evidence suggests that any number of examples 
that agree with the theory would not prove it, 
but it’s enough to present one that disagree to 
reject it. The study described above serves as 
such an example. It shows that any method 
developed to evaluate random values or 
probabilities of events related with parametric 
roll in head seas cannot use the assumption of 
ergodic or Gaussian character for this 
stochastic process. 
 
One possible approach toward developing 
probabilistic methods for parametric roll would 
be to explore the Monte-Carlo extension of 
conventional frequency domain methods. To 
proceed that way, there must first be found a 
reliable way to calculate parametric excitation 
based on hull geometry and mass properties. 
Using the spectra of heave and pitch motions 
already known from frequency domain 
calculations, it would be possible to present 
parametric excitation in a form of Fourier 
series: 

 ( )∑
=

ε+ϕ+ω=
N

i
iiiai tftf

1

cos)(  (12) 

Here fai is an amplitude of irregular parametric 
excitation calculated from the pitch and heave 
spectra with an appropriate response amplitude 
operator (RAO), • i  is phase shift between 
parametric excitation and the heave and pitch 
motion, and • i  is a random phase with uniform 
distribution. 
 
The excitation in form (12) can be substituted 
into an ordinary nonlinear differential equation 
which approximately describes roll. This 

equation (which is a particular case of Hill 
equation) can be solved with Monte-Carlo 
method, producing statistics of roll extremes 
without any particular a priori assumption of 
distribution. The ergodic assumption also can 
be avoided here, as it always possible to 
generate as many realizations as are needed to 
achieve the required statistical accuracy of the 
parametric roll response. With the computer 
power available today, such calculations would 
be trivial, though more sophisticated 
simulations, like LAMP, will be necessary for 
validation. 
 
Roll extremes with small probability might be 
extrapolated by fitting a theoretical distribution 
to the generated statistics. 
 
The accuracy of such an approach will be 
somewhat dependent on the reliability of the 
roll damping terms, but it does seem to be 
possible to avoid this problem anyway. 
 
At the same time, methods based on the group 
structure of waves and envelope presentation of 
parametric excitation, like [12, 13] might be 
very promising and deserve special attention. 
 
 
7. PARAMETRIC ROLL AND 
ANTI-ROLL SYSTEMS 
 
With the growing awareness of the parametric 
roll phenomenon, there is a corresponding 
growing interest in the use of roll control 
devices to mitigate parametric roll.  Any 
technical capability to predict extreme values 
of parametric roll and evaluate corresponding 
risk will, for completeness, need to consider 
such systems.  Similarly, the proper design of 
an anti-roll system will need to consider the 
system’s impact on the extreme value 
responses.  In the present work, we are working 
toward both of these goals by incorporating 
engineering level models of anti-roll systems 
into our nonlinear simulation tools. 



8th International Conference on 
the Stability of Ships and Ocean Vehicles 

Escuela Técnica Superior de Ingenieros Navales 
 338 

Since parametric roll, like all parametric 
oscillations, has an excitation threshold that 
must be overcome in order for the phenomenon 
to exist, a natural way to mitigate parametric 
roll would be to decrease the excitation below 
the threshold by creating an opposing roll 
moment. The opposing roll moment could be 
generated by anti-rolling fins, water motion in 
tanks, moving mass systems, or rudder 
deflection and could be actively controlled or 
passive systems. 
 
The present study considered a large, modern 
container ship fitted with a passive, U-tube 
anti-rolling tank.  The ship in this study is 
similar to, but somewhat larger than, the C11 
class container ship studied above. 
 
 
7.1 Model of Anti-Rolling Tank 
 

 
Fig. 23. Schematic of an anti-roll tank 
 
 
A schematic of the anti-roll tank is shown in 
Fig. 23. In order to tank’s effect on the roll 
motion, a model has been incorporated into 
LAMP that solves for the 1-DOF fluid motion 
in the U-tube tank and determines the coupled 
nonlinear 6-DOF forces acting on the ship.  
The tank model runs concurrently with the 

wave-body hydrodynamics solver in the time 
domain.   
 
The tank model includes expressions for the 
shear stress on the tank walls and energy losses 
in the elbows, but does not account for 
“sloshing” in the vertical columns themselves.  
The theoretical description of the model can be 
found in [13].  
 
 
7.2 Effectiveness of Anti-Rolling Tank 
 
A series of calculations were performed to 
determine the effectiveness of the passive anti-
roll tank system in reducing the ship’s 
susceptibility to parametric roll. Fig. 24 shows 
the predicted maximum roll angles for this 
containership in regular head seas as a function 
of encounter frequency.  The calculation for the 
roll response at each frequency is similar to 
that shown in Fig. 2 above, except that a large 
(5 degree) initial roll perturbation was used so 
that the steady state parametric rolling could be 
reached quickly. 

 
Fig. 24. Parametric Roll Response with 
different volume of anti-roll tank 
 
 
The range of encounter frequency for which 
this particular ship might be susceptible to 
parametric roll is indicated by the curve for the 
case with no anti-roll tanks. The natural roll 
frequency for the ship in this case is 0.251 
rad/sec, which corresponds to a 25 second 
period, so parametric rolling would be expected 
near an encounter frequency of 0.502 rad/sec, 
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which is clearly shown in the results. This ship 
yielded a wide range of encounter frequencies 
where parametric roll is predicted, indicating 
that it is very susceptible to parametric roll.  
 
Additional curves plotted in Fig. 24 show the 
response for the ship with a single passive anti-
roll tank where the tank mass is equivalent to 
0.27, 0.35, 0.71, and 1.4 percent of the ship’s 
displacement.  In each case, the natural period 
of the tank system is designed to be equal to 
the ship’s natural roll period of 25 seconds. 
The 0.27% case shows a small reduction in the 
bandwidth where parametric roll occurs, but 
there is still a region of large roll angles. Both 
the 0.35% and 0.71% cases show virtually no 
roll larger than the initial 5-degree roll.  The 
1.4% case shows a region of slightly elevated 
roll motion (<10 deg.) for low encounter 
frequencies due to the inertia of the large mass 
of water in the tank system, which is not in 
equilibrium at the beginning of the simulation. 
The tank fluid continues to oscillate for a short 
period of time until it eventually damps out as 
the simulation progresses. 
 
To check the performance of the U-tube tank in 
extreme irregular seas, simulations were made 
for the ship operating at various speed and 
headings in short-crested seaway with a 
significant wave height of 11.49 m, which 
corresponds to sea state 8.  For head seas at 10 
knots the 0.71% tank system reduced the 
maximum roll angle from 48 degrees to less 
than 10 degrees. 
 
Overall, anti-rolling systems like the U-tube 
anti-roll tank appear to have a great deal or 
promise in the mitigation of the large roll 
motions caused by parametric roll.  However 
the optimization of such a system for 
maximum benefit at minimum cost will likely 
require a fairly sophisticated simulation system 
coupled to advanced probabilistic methods. 
 
 
 

8. CONCLUSIONS AND COMMENTS 
 
While this and other efforts analyzing the 
parametric roll phenomena are far from being 
completed, some preliminary conclusions can 
be drawn. 
 
With the recognition of parametric roll in head 
seas as a significant danger for the stability of 
large container ships and for the safety of the 
cargo and people aboard, reliable methods are 
needed to evaluate the risk of operation.  
 
While model tests and nonlinear numerical 
simulations remain the best tools for evaluating 
parametric roll in particular situations, 
approximate methods should be developed for 
predicting the likelihood and magnitude of 
large roll events for everyday engineering 
analysis. Certain caution, however, has to be 
exercised, as far as modeling assumptions are 
concern, since parametric roll is not ergodic 
and not necessarily a Gaussian stochastic 
process. 
 
It may well be that a not insignificant risk of 
parametric roll in head seas cannot be avoided, 
especially for large container carriers. To 
mitigate possible damage resulting from 
extreme roll motions and decrease danger of 
capsizing, installation of anti-rolling devices 
might be considered as a safety measure. 
Numerical simulation can be used as a primary 
analysis tool in the design of such systems. 
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