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ABSTRACT  

Large ships and platforms are kept in equilibrium by controlling the amount of mass in its tanks 
(ballast, oil, diesel, etc) as a way to compensate the disequilibrium caused by external forces, by its 
cargo or by its own weight. In this paper we present a sequential linear program that calculates the 
amount of liquid in each tank necessary to put the vessel at any desired position while minimizing 
the amount of liquid displacement, the structural stress or the free surface of all tanks selected for 
change. 
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1. INTRODUCTION 

Sequential linear programs solve nonlinear 
problems by a sequence of linear 
approximations that are solved using linear 
programming (Bertsimas & Tsitsiklis, 1997) 
Generally speaking, these algorithms are 
iterative procedures that, at each step, try to 
guess the solution of the nonlinear problem 
using the solutions provided by the linear 
approximations until convergence is achieved. 
In this problem the nonlinearity arises in the 
computation of the center of gravity of the 
tanks, which are allowed to have an arbitrary 
geometric form, position and orientation. So, 
the longitudinal and transversal center of 
gravity values (LCG and TCG) may vary 
during the filling process. The linear 
approximations consist in considering each 
tank as a punctual load so that the equilibrium 

of the vessel can be easily expressed as the 
constraints of a linear program, responsible for 
computing the concentrated mass in each tank. 
After computing these masses, the algorithm 
computes the actual position of the center of 
gravity of each tank, using the correct 
geometry. Convergence is achieved when the 
position of the punctual loads and the center of 
gravity of the tanks do not vary significantly. 
Using the minimization of the variation of 
mass at each punctual load as the objective 
function of the linear program, we guarantee 
that the solutions obtained correspond to the 
minimum displacement of liquids. 

Our algorithm incorporates an optional 
heuristic to minimize the structural stress of the 
vessel, which consists in trying to achieve an 
even distribution of liquids among the cargo, 
ballast and oil tanks, assuming that the loading 
distribution can be similar to the buoyancy. 
This algorithm has been implemented in the 



 

   

 

Sstab Program (Coelho et al., 2003) and has 
proved its efficiency in the design of ships and 
oil platforms (Campos Basin, Rio de Janeiro, 
Brasil) and also in the design of emergency 
plans performed by the Classification Societies 
ABS, DNV, LR, and BV.  

Our algorithm also incorporates a second 
optional heuristic to minimize the free surface 
of the tanks vessel, which consists in trying to 
concentrate a maximum amount of liquids in 
the smaller number of tanks possible. 

2. LINEAR PROGRAMMING 

As mentioned in the Introduction, the 
algorithm proposed uses linear programming in 
order to compute an equilibrium configuration 
for a vessel. Generally speaking, linear 
programs (an instance of a linear programming 
problem) have two components: a set of linear 
constraints and a cost function that can be 
maximized or minimized. A general 
formulation for linear programs is shown in 
Equations 1 to 6. 
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 0≥jx  1Nj ∈  (5)
 0≤jx  2Nj ∈  (6)

In the figure, uppercase letters represent 
vectors and lowercase letters represent scalar 
values. X represents the vector containing all 
the variables that are being determined by the 
program and x represents a single variable. 
Different weights (C) can be assigned to each 
variable in the cost function (Equation 1). The 
different kinds of constraints are also shown (in 
light gray). Notice that equality and inequality 
constraints are acceptable. The first three sets 
of constraints (M1, M2 and M3) contain a vector 
A and a scalar value b, which represent the data 
associated with a constraint. 

A feasible solution for a linear program is a 
solution that does not violate any of the 
constraints of the problem. An optimal solution 
is the feasible solution with the largest or 
smallest evaluation of the cost function, 
depending on whether the problem is a 
minimization or maximization problem. 

In the next section the general linear 
programming problem is specialized for 
computing the equilibrium of a vessel. 

2.1 Linear Program for the Equilibrium 
of a Vessel 

A vessel is in equilibrium when the forces 
acting on it, and their derived moments, are 
balanced. That is, buoyancy, weight, external 
forces and the moments they generate must be 
balanced. Wind and current forces are 
examples of external forces that act on a vessel.  

Among the forces mentioned above, the 
only ones that can be controlled are the weight 
forces resulting from the liquids stored in the 
tanks of the vessel. Therefore, the variables 
used in the automatic loading linear program 
must be related to the amount of liquids in the 
tanks of the vessel. For flexibility, the variation 
of volume in each tank was chosen. Given the 
variables of the problem, the equilibrium 
constraints and the constraints on the variables 
themselves can be easily written, as Equations 
7 to 12 show. 
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(12) 
optional

iV  Initial volume at tank i 

iV∆  Variation of volume at tank i 

max
iV  Capacity of tank i 



 

   

 

iρ  Density of the liquid in tank i 

G Gravity constant 

ii yx ,  Coordinates of the center of gravity of tank 
i 

B  Buoyancy force 
W  Weight of the vessel 

yx MM ,
 

Moments resulting from external forces 

T  Set of tanks of the vessel 

kT  Set of tanks holding the same kind of 
liquid (k) 

total
kV  Total volume of liquids in tanks belonging 

to Tk 

The first constraint assures a proper balance 
of forces. In order to be in equilibrium the 
weight of the liquids in the tanks and the 
weight of the platform must be equal to 
buoyancy. The second and third constraints 
assure the balance of the moments caused by 
the liquids and the ones caused by external 
forces. These first three constraints are 
responsible for maintaining the vessel in 
equilibrium. 

Constraints ten and eleven are relative to 
the variables of the problem. The former 
guarantees that no tank receives more liquid 
than its maximum capacity while the latter 
guarantees that no tank will hold negative 
volumes. 

The coordinate system to which Equation 2 
refers is defined as having the X Axis pointing 
forward along the longitudinal axis of the 
model, the Y Axis defines a plane parallel to 
the sea surface and Z Axis always points 
upwards. Figure 1 shows a heeled ship and the 
global Cartesian coordinate system used. 
 

 
Figure 1- Coordinate System. 

It is not uncommon for a vessel to contain 
tanks holding different kinds of liquids (fresh 
water, diesel, oil, sea water, etc). In these 
situations, it is important to guarantee that 
these different types of liquids are not mixed 
by the algorithm. That is accomplished by 
using the constraint expressed in Equation 12. 
This constraint forces indicates that the tanks 
belonging to the set Tk hold a determined 
amount of liquid. Therefore, by creating a set 
Tk for each type of liquid and using their total 
volume as the quantity of liquid that they must 
hold, the mixing of liquids can be easily 
avoided. This constraint, however, will rarely 
be used with ballast tanks, as sea water can be 
disposed of and collected by a vessel. The same 
is not true, for example, for oil tanks.  

When creating an automatic loading 
program for a vessel, one must decide whether 
to use or not the sixth constraint. When used, 
one must also decide how many instances of 
this constraint will be used and for what types 
of tanks. Most of the times, this constraint is 
expected to be used with oil, fresh water and 
diesel tanks. 

2.2 External Forces and Weight Forces 

The constraints presented in the previous 
section account for the existence of external 
forces and their resulting moments. In our 
implementation these values are computed 
directly from a geometric model of the vessel. 
This model is constructed as a set of individual 
compartments that define its complete stability 
model. The compartments can be classified as 
external (hull body and deck elements) or 
internal (void spaces, elevators, access trunks, 
chain lockers, tanks, etc). Each individual 
compartment is composed of a set of planar 
faces, which are defined a set of three-
dimensional coordinates (Coelho et al, 2003). 

Wind forces and their resulting moments 
are computed, according to IMO's 
recommendation (IMO, 2001), as a function of 
the velocity of the wind and of the projected 



 

   

 

area of the external compartments that are 
exposed to wind action. The same procedure is 
used for current forces. 

The buoyancy is determined by computing 
the contribution of all submerged parts of the 
external compartment. Using the mesh 
intersection algorithms implemented in the MG 
library (Coelho et al., 2000), the external 
compartments are cut into two parts using a 
plane located at the sea surface position. The 
center of gravity and the volume of each 
submerged part are then used to compute the 
resulting buoyancy force and the center of 
buoyancy.  

The same procedure is used to determine 
the center of gravity of each tank. Using a 
procedure similar to a binary search (Cormen, 
et al., 2001), the position of the free surface 
plane of each tank is determined based on the 
volume it is currently holding and also based 
on its current orientation. Then, after cutting 
the tanks in two parts (wet and dry surfaces), 
similar to what was done for the external 
compartments, the center of gravity can be 
determined by computing the geometric center 
of the faces containing liquids.  

Figure 2 shows an example of the mesh 
operations performed on the external 
compartments and on tanks in order to compute 
the buoyancy or tank weights and the center of 
buoyancy or gravity of each compartment (hull 
or tank). The mesh of the hull is shown in 
green and the meshes corresponding to tanks, 
in yellow. 

 

 

 

 

 
Figure 2- Cutting of compartments. 

3. COST FUNCTION 

The last component of the linear program 
created for the automatic loading algorithm that 
must be described is the cost function. As 
mentioned before, this function is used to select 
the best result from set of the feasible solutions 
of a problem instance. In the automatic loading, 
the cost function selected minimizes the 
variation of volume in each tank, as Equation 
13 shows.  

Another possible cost function is selecting 
the fastest pumping adjustment, that is, the 
fastest way of transferring liquids among the 
available tanks of the floating system. In order 
to create this cost function data about the 
pumping capacities of each tank are necessary. 

 
Minimize ∑∆ iV  Ti ∈  (13)

4. THE SEQUENTIAL LINEAR 
PROGRAM 

Observing the tanks illustrated in Figure 2, 
it is easy to see the X and Y coordinates of its 
center of gravity are not constant, for many 
tanks at the stern and bow (all of them if the 
turn of bilge is significant). They are, actually a 
function of the volume contained in the tank. 
The linear program developed for the 
automatic ballast algorithm, however, 
considers them as constants. In order to 
consider the correct centers of gravity, the 
automatic ballast algorithm is implemented as a 
sequential linear program.  

The algorithm proceeds as illustrated in 
Figure 3. The linear program, as described in 
Section 2.1 is used to estimate the first 
variations of volume. These are then used to 
compute the new centers of gravity of each 
tank, as described in Section 2.2. Finally, the 
new centers of gravity (CG) are compared with 
the previous ones. In case the distance between 
all of them is smaller than a predefined error 
tolerance, the algorithm stops and the desired 



 

   

 

variation of volume in each tank is known. In 
case the distance between old and new CGs is 
larger than the error tolerance, the algorithm 
starts a new iteration, using the new CGs 
instead of the old ones. 

The algorithm also stops after a maximum 
number of iterations is reached. 

 

 

Figure 3- Chart Flow of the loading 
algorithm. 

5. IMPROVING THE RESULTS 

The equilibrium of a floating system is an 
essential requirement for the automatic ballast 
algorithm. In some cases, however, the 
consideration of other requirements is also 
important. Two additional requirements were 
included in the automatic ballast algorithm: the 
minimization of the structural stress of the 
vessel and the minimization of free surface 
effects of the tanks. 

5.1 Minimization of Free Surface Effects 

Free surface effects occur when a tank is 
partially filled with liquids. No free surface 
effect exists when a tank is empty or 
completely full. When dealing with semi-
submersible platforms or self-elevating units, 
the minimization of this effect is important to 

avoid variations in their center of gravity when 
the vessel heels for some reason. 

The same strategy used to deal with the 
non-linearity of the center of gravity of the 
tanks can be applied to this problem. That is, 
the sequential linear program, as depicted in 
Figure 3 is used as a step of another iterative 
procedure. This new algorithm minimizes the 
effects of free surfaces by reducing the number 
of tanks used in the automatic ballast algorithm 
as shown in Figure 4. The algorithm begins 
with an empty set of tanks and at each iteration 
adds one tank to the set. The equilibrium of the 
vessel, using the updated set of tanks is then 
computed. Convergence is achieved when the 
equilibrium is computed successfully. 
Otherwise, the algorithm starts a new iteration, 
including an additional tank and then 
reapeating the equilibrium computation. 

Figure 7 shows an example of a ballast 
configuration computed using the algorithm 
presented in this section. 

 

Figure 4- Minimization of free surfaces. 

5.2 Minimization of Structural Stress 

Some experiments performed with the 
automatic ballast algorithm have shown that 
some loading conditions proposed by the 
algorithm can result in violation of the 
envelopes of shear-forces or bending moments 



 

   

 

of large ships. Irregular variations of the shear-
forces have also been observed in many 
applications of the standard algorithm. 

Both conditions were observed when the 
distribution of liquids among the tanks was 
uneven.  

In order to reduce these effects, two more 
constraints have been introduced in the 
algorithm. The new constraints control the 
variation of volume among tanks, trying to 
create a regular longitudinal distribution of 
liquids. What, in most cases, will result in a 
reduction of stresses. Figure 5 shows the 
buoyancy curve (in blue) for a typical ship 
vessel. This curve is constant along the parallel 
body, so, theoretically, if the ship is loaded 
with a curve that exactly matches the buoyancy 
curve, the shear and bending effects will be 
zero. 

 

 

 

 
 
Figure 5- Buoyancy curve of a ship. 

The new constraints can be seen in 
Equations 14 and 15. Two new parameters 
were introduced: a volume variation tolerance 
that is used among all tanks (TOLg) and a 
volume variation tolerance for the 
neighbouring tanks (TOLn). As Equations 4 
and 5 show, the amount of liquid in the tanks 
will depend on the volume of its neighbouring 
tanks and of all other tanks. 

The optimal value for both TOLg and 
TOLn is zero, which corresponds to a perfectly 
even distribution of liquids among the tanks. 
This value, however, is not acceptable for most 
cases. The determination of TOLg and TOLn is 
then performed by using an iterative procedure, 
as shown in Figure 6. 
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gTOL  Global volume variation tolerance 

nTOL  Neighbor volume variation tolerance 

iN  Set of neighbor tanks of tank i 

 
 

Figure 6- Determination of TOLg and 
TOLn. 

6. RESULTS 

We selected three examples to show the 
possibilities of the automatic loading 
algorithm. The first one shows a semi-
submersible platform with 24.000 tons of 
ballast capacity with an operational draft of 
23.10 meters. The total light weight is 25.600 
tons and the CG of this light weight is 2.4 
meters forward and 1.1 meters starboard. After 
selecting all ballast tanks (initially empty) to 
balance the model in even keel at the 
operational draft, the results obtained with the 
minimization with the free-surface parameter 
activated are shown by Table 1  

Figure 7 shows the tank loading defined by 

Weight 

Buoyancy 

 
Sstab Longitudinal Strength - 100% 
Loaded 

Load (ton/m) 
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the algorithm. The compartments containing 
liquid are shown in solid blue. All other 
compartments are shown with transparency.  

 

 

 

 

 
Figure 7- Ballast loading after algorithm. 
 
Table 1- Tank loading after algorithm. 

Name 
 

Capacity 
(t) 

Final 
Weight (t) 

Final 
Filling (%) 

BT_PS_FWD_09 441.67 441.67 100 
BT_SB_FWD_21 441.67 441.67 100 
BT_SB_FWD_22 427.14 427.14 100 
BT_PS_FWD_11 438.71 438.71 100 
BT_SB_FWD_19 438.71 438.71 100 
BT_PS_FWD_13 438.71 438.71 100 
BT_SB_FWD_17 438.71 438.71 100 
BT_PS_FWD_14 622.88 622.88 100 
BT_SB_FWD_18 622.88 622.88 100 
BT_PS_MDS_15 438.71 438.71 100 
BT_SB_MDS_15 438.71 438.71 100 
BT_PS_MDS_16 819.31 646.82 79 
BT_SB_MDS_16 819.31 819.31 100 
BT_PS_AFT_09 441.67 352.32 80 
BT_PS_AFT_11 438.71 438.71 100 
BT_PS_AFT_11 438.71 438.71 100 

BT_PS_MDS_15b 438.71 438.71 100 
BT_SB_AFT_19 438.71 438.71 100 
BT_SB_AFT_18 622.88 559.64 90 
BT_PS_AFT_11 438.71 438.71 100 

BT_PS_MDS_15b 438.71 438.71 100 

It possible to see in Figure 7 that the most 
significative trim and heel tanks were not used. 
This is because of the sorting procedure applied 
to the selected set of tanks that was performed 
based on the heel and trim moment capacities 
and, with the minimization of free-surface 
parameter selected, those tanks are the last to 
be used. 

The second example consists of a FPSO 
with the minimization of longitudinal stresses 

parameter selected. In this example the idea is 
to maintain the total weight (light-weight + 
ballast + cargo + oil tanks) but to redistribute 
the cargo in order to minimize the shear and 
bending longitudinal forces. 

 

 

 

 

 
 
 
Figure 8 – Ship loaded with minimum shear. 

Figure 8 shows the final loading of the 
tanks. As in the other images captured from 
Sstab, the meshes in green show the external 
hull. Ballast tanks are shown in solid blue and 
oil tanks in solid yellow. 

Figures 9 and 10 show the graphs of shear 
forces and bending moments, respectively. 

The last example shows an emergency 
situation where the automatic loading is used to 
restore the position of a platform after a 
damage occurrence. Figure 11 shows the model 
balanced after the damage. Damaged tanks are 
shown in solid red. 

As shown in Figure 12, a new tank loading 
was defined by the algorithm to restore the 
platform to the even keel position before the 
recovering of the tanks. 
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Figure 9- Shear forces of Figure 8. 



 

   

 

 

 

 

 

 
Figure 10- Bending forces of Figure 8. 
 

 

 

 

 

 

 
Figure 11- Inclination due to damage. 
 

 

 

 

 

 
 
Figure 12- New loading restores even-keel. 
 

7. CONCLUSIONS 

An algorithm to balance the loading of 
tanks was successfully defined and 
implemented in Program Sstab. This algorithm 
is responsible for defining the operational 
conditions of semi-submersible oil platforms 
and FPSOs that are being designed by 
Petrobras. 

The algorithm is fast enough to run in 
standard PCs. The tests were made in a 
Pentium IV with 2.8 GHz CPU capacity and 
512 Mb of RAM and, in all three examples, 
Sstab took about a minute to complete the new 
loading definitions. 

One of the major problems of using a linear 
programming library to solve this non linear 
problem is that there are no partial results for 
the loading condition. The user may want an 
answer like how much could you do. We are 
also working on this problem, using the same 
linear programming library. As an alternative, 
some non-linear library could be tested. 

We are improving the data of the program 
to include the pumping properties and the costs 
of each operation, what will enable the 
implementation of the cost optimization. 
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