
 
 

   

Using the Graphics Hardware to Compute Wind Forces 

Sérgio Alvares R. de S. Maffra, Tecgraf/PUC-Rio 

 Luiz Cristovao Gomes Coelho, Tecgraf/PUC-Rio 

 Guilherme Tavares Malizia Alves, Tecgraf/PUC-Rio 

 Mauro Costa de Oliveira, Petrobras/Cenpes 

Carlos Gomes Jordani, Petrobras/Cenpes 

ABSTRACT  

We propose an alternative procedure to compute the forces and moments resulting from the 
action of winds on a vessel, by using a computer generated image to determine the projected area of 
its exposed surfaces.  The results obtained by the new method are then compared with real wind 
tunnel tests. 
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1. INTRODUCTION 

According to IMO (2001), the forces and 
moments resulting from the action of winds on 
a vessel can be computed as a function of the 
projected area of the objects, of its shape 
coefficients, of its height coefficients, of the 
velocity of the wind and of the density of the 
air: 
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F  Wind force 

SC  Shape coefficient 

HC  Height coefficient 
ρ  Density of the air 
V  Velocity of the wind 
A  Projected area of exposed surfaces 

Although much simpler than a 
computational fluid dynamics simulation, the 
methodology suggested by IMO can be 
challenging when one deals with objects that 
present a complex geometry. The challenge, in 

these cases, is concerned with the 
determination of the projected area of all 
exposed surfaces of the vessel. If one decides 
to work directly with the geometry of the 
object, Boolean operations must be used on 
polygons (intersection, subtraction, addition, 
etc) which are hard to implement and are also 
error prone due to imprecision in the 
representation of floating point numbers.  

As an alternative, IMO allows the use of 
wind tunnel tests on a representative model of 
the unit instead of the formula above. Wind 
tunnel tests however are not the most practical 
approach, especially when the vessel being 
tested is in an initial design phase. Changes in 
the design will probably occur and invalidate 
the tests. Therefore, a less expensive 
computational procedure can be of great value.  

Since IMO requires that wind forces should 
be considered from any direction relative to the 
unit and with different values of wind velocity, 
the analysis of wind heeling forces using 
computational fluid dynamic (CFD) 
simulations can also be a costly procedure, 
given the large number of different simulations 
and the large number of meshes that must be 
constructed for these simulations. 
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We propose an alternative procedure to the 
direct use of geometric primitives when 
evaluating Equation 1. This alternative, as 
implemented in all modern graphics hardware, 
is to convert every geometric primitive into a 
set of pixels, what turns the Boolean operations 
trivial. Once the set of visible pixels is 
determined, which correspond to determining 
the visible surface of the object, one must only 
compute the summation of their area to obtain 
the projected area needed to compute the wind 
force. As most of the operations necessary in 
this algorithm are already implemented in the 
hardware of all commercial graphics card, an 
efficient implementation of the algorithm is not 
hard to achieve. 

When computed according to our proposal, 
the projected area is actually, an approximation 
of the real area. This is a consequence of the 
transformation of the geometric primitives into 
a set of pixels. We also present in the paper 
how an upper bound of this error can be 
computed.  

2. COMPUTING THE WIND FORCE 

The determination of visible surface (Foley 
et al., 1997) is a well-known problem in the 
computer graphics field. Several algorithms 
have been proposed to this date, but they can 
be divided in two main categories: image space 
and object space algorithms (Rij, 1994).  

Object space algorithms solve the visibility 
problem by working directly with the 
geometric primitives, trying to sort them from 
the farthest to the closest one with respect to 
the camera (viewer). When the primitives 
cannot be sorted, Boolean operations must be 
used to settle the problem. 

Digital images are usually represented as a 
rectangular matrix of numerical values used to 
represent different colors. Image space 
algorithms explore this representation directly, 
avoiding most of the complex geometric 
operations that object space algorithms must 

deal with. Image space algorithms are also 
naturally parallel, what makes them easier to 
implement efficiently in hardware. In this 
work, we show how the Z-Buffer algorithm 
(Foley et al., 1997) can be used to define the 
wind exposed areas of a complex model. 

2.1 The Model 

The model of a floating system may be 
constructed as a set of individual compartments 
that define the complete stability model. With 
this approach, we may classify these 
compartments as external (Hull body, Deck 
elements, Hellideck) or internal (Void spaces, 
Elevators, Access trunks, Chain lockers, etc), 
according to its wind exposure. Figure 1 shows 
the external compartments of a semi-
submersible oil platform. Each individual 
compartment is composed of a set of planar 
faces, each face is defined by a set 3D 
positions, which are related to a global 
Cartesian coordinate system.   

2.2 Determination of Visible Surface 
Using Vector Algebra 

In a traditional approach, the visible 
portions can be computed using classical vector 
algebra in the 3D coordinate space. If we 
assume that the compartment faces do not 
overlap, a BSP Tree (Foley et al., 1997)  
technique can be used to sort the faces and to 
define the visible ones, although an algorithm 
to construct such representations can become 
slow when the number of faces increases 
significantly. Those algorithms should be 
coupled to a Boolean operator tool (Coelho et 
al., 2000) to obtain a consistent set of 
polygonal areas, necessary to represent the 
remaining visible faces.  

Figure 1 shows the external model of a 
semi-submersible oil platform. If we imagine 
the wind acting in the same view direction (the 
direction of projection, or DOP) adopted to plot 
the drawing, the computation of the visible 



 
 

   

areas in the detail shown by Figure 2 is an 
example of the use of the Boolean operations 
necessary to determine the visible areas near 
the helideck where there are intersections 
between several possible visible areas, that 
must be trimmed. 

Figure 1 – Semi-submersible oil platform. 
 

 
 
Figure 2 – Detail near the helideck. 

2.3 Determination of Visible Surface 
Using the Graphics Card 

To produce the visible surfaces of Figure 1, 
a video card that implements the OpenGL 
library primitives was employed. The same 
procedure used in the generation of the image 
can be used to determine the projected area of a 
vessel that is exposed to the wind. 

The graphics library used in this work 
(OpenGL) contains an implementation of the 
Z-Buffer algorithm. As mentioned before, this 

algorithm avoids the sorting and the Boolean 
operations by transforming each of the 
geometric primitives into a set of pixels that are 
tested against each other for visibility. The 
visible pixels are then stored in the final image. 
The next sections explain how to configure the 
Z-Buffer algorithm in order to generate an 
image appropriate for the computation of wind 
forces and how to compute these forces using 
such an image. 

2.4 Configuring the Z-Buffer Algorithm 

Generating images using OpenGL can be a 
complex task due to the large quantity of 
options and different rendering techniques that 
can be applied. Fortunately, in order to 
generate images suitable for the computation of 
wind forces, only a few steps are required. 

The first step consists in configuring the 
camera. The camera must be positioned in a 
way that allows the entire object to be seen. 
The viewing direction of the camera (its 
direction of projection or DOP) must be the 
same as the direction of incidence of the wind. 
As Equation 1 requires the areas projected to 
the vertical plane, the projection plane of the 
camera must be a vertical plane (its up vector is 
equal to (0,0,1)). Also, an orthographic 
projection must be used, in order to allow a 
correct measurement of areas. A perspective 
projection cannot be used as it would deform 
the model to create the perspective effect on 
the generated image. 

The second step consists in choosing 
appropriate colors for the components of the 
geometric models that represent the different 
compartments of the floating system being 
studied. After the generation of the final image 
has been completed, there is no relationship 
between the pixels in the image and the 
compartment it represents. 

Given a pixel of the image, it is possible to 
determine all the parameters needed for 
Equation 1 with the exception of its associated 



 
 

   

shape coefficient, which can only be 
determined by knowing the compartment 
associated with a pixel of the image. The 
technique to solve this problem is to use as the 
color of each compartment an integer identifier 
(an integer number that represents a class of 
objects or a single object). As we are interested 
in the exposed area of each compartment, each 
compartment is assigned a unique color. In this 
way, it is possible to determine the set of 
visible pixels associated with each individual 
compartment, by examining the colors of the 
pixels. 

As the lighting computations performed by 
the graphics library can alter the colors it 
receives as input, lighting must be disabled 
when generating images for the computation of 
wind forces. 

After configuring the graphics library with 
the procedure described in this section, one 
must only render the final image to obtain the 
data necessary for the computation of the wind 
force. 

Figure 3 shows an example of an image of 
an oil platform generated using the techniques 
described in this section. 

 

 

 

 

 
Figure 3- Image for wind force computation. 

2.5 Computing the Wind Force 

The computation of the wind force using 
the image generated according to the previous 
section is similar to a numerical integration 
procedure, since each pixel of the image can be 
seen as an integration element. Equations 2 and 

3 show how to compute the value of the wind 
force and its center of pressure, respectively. 
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F  Wind force 

ijP  Pixel located at position (i,j) of the 
image 

ρ  Density of the air 
V  Velocity of the air 

pA  Area of a pixel 

)( pCs  Shape coefficient of pixel p 

)( pCh  Height coefficient of pixel p 

w  Width of the image 
h  Height of the image 
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pC  Center of pressure 

)( ph  Height of pixel p  

 Equation 2 depends on two functions that 
have a pixel as a parameter: the shape 
coefficient function (Cs) and the height 
coefficient function (Ch). Both functions can 
be implemented as tables to indicate their 
respective results.  

The shape coefficient table has colors as 
indices. The same colors used to represent each 
individual compartment. In this way, with the 
color of a pixel, one can determine the 
corresponding compartment of the floating 
system and, consequently, its shape coefficient. 

The table that implements the height 
coefficient function is indexed by the distance 
of a pixel to the surface of the sea. One of the 
parameters of the camera configuration is the 
region of space that is visible, which is 
completely covered by the pixels of the image. 
Therefore, the position of a pixel in space can 
be easily determined from its position inside 
the image. Then, by looking up the 
corresponding height range in the height 



 
 

   

coefficient table, the coefficient desired is 
determined. 

Equation 3 depends on another function 
that has a pixel as parameter. This function 
computes the distance of the pixel to the 
surface of the sea, using the same procedure to 
determine the index of the height coefficient 
table. 
Table 1: Height Coefficients Table  

From (m) Until(m) Height Coeff. 
0,00 15,30 1,00 

15,30 30,50 1,10 
30,50 46,00 1,20 
46,00 61,00 1,30 
61,00 76,00 1,37 
76,00 91,50 1,43 
91,50 106,50 1,48 
106,50 122,00 1,52 
122,00 137,00 1,56 
137,00 152,50 1,60 
152,50 167,50 1,63 
167,50 183,00 1,67 
183,00 198,00 1,70 
198,00 213,50 1,72 
213,50 228,50 1,75 
228,50 244,00 1,77 
244,00 256,00 1,79 
256,00 --- 1,80 

 
Table 2: Shape Coefficients 

Shape Cs 

Spherical 0.4 
Cylindrical 0.5 

Large flat surfaces (hull, 
deckhouse, etc) 1.0 

Drilling derrick 1.25 
Wires 1.2 

Exposed beams and girders 
under deck 1.3 

Small Parts 1.4 
Isolated Shapes 

(crane, beam, etc) 1.5 

Clustered deckhouses and 
similar 1.1 

 

The previous tables present some values of 
shape coefficients and an example of a height 
coefficient table. 

2.6 Rasterization Errors 

The process of transforming a geometric 
primitive (usually a polygon) into a set of 
pixels is called rasterization. Whenever a 
geometric primitive is rasterized there are 
errors due to the discrete nature of the digital 
images. Continuous lines, for example, cannot 
be represented correctly on an image or on a 
computer monitor. The discretization errors, 
however, occur only on the border of the 
primitives. Figure 4 shows how the 
rasterization of some geometric primitives look 
like on an image. Notice how the rasterized 
primitives try to approximate the continuous 
ones (marked as red lines in the figure). 

Since only the pixels on borders contain 
errors, it is possible to compute an upper bound 
for the error on the computation of the 
projected area. This upper bound is computed 
by dividing the total area of pixels located on 
borders by the total area occupied by pixels. 
The smaller the value on this upper bound, the 
better is the estimative of the wind force. 

One way to reduce the rasterization error is 
to increase the resolution of the image 
generated. Larger images will approximate the 
geometric primitives better at the cost of more 
memory and more computational time for the 
evaluation of the wind force and of the center 
of pressure. 

 

 

 

 

 
 
Figure 4- Rasterization errors. 
 
 



 
 

   

3. RESULTS  

The algorithm described in the previous 
sections has been implemented in the Sstab 
program (Coelho et al., 2003) and is currently 
being used to calculate the wind and stream 
forces of Petrobras-BR models, both in the 
design stage and for existing units. The 
algorithm was named WFE, whose initials 
stand for Wind Force Estimator. As an example 
of the use of WFE, we show some results for 
the semi-submersible platform of Figures 1 and 
2. The wind computations were compared with 
the wind tunnel test (WTT) results.  

The wind tunnel test report presents results 
for the operational draft and for transit draft. 
We selected the highest heeling levers that 
were obtained for an angle of wind incidence 
of 320 degrees with respect to the longitudinal 
axis of the hull. The tests were obtained for 
three different wind velocities: 25.7 m/s, 37.0 
m/s, 51.4 m/s. We show the comparative 
results in the Table 3. 
 
Table 3 – Heeling levers for operational draft 

 25.7 m/s 37.0 m/s 51.4 m/s Degree 
WTT 0.188 0.389 0.750 0 
WFE 0.127 0.252 0.519 0 
WTT 0.192 0.397 0.767 5 
WFE 0.127 0.278 0.563 5 
WTT 0.183 0.379 0.730 10 
WFE 0.140 0.268 0.560 10 
WTT 0.187 0.388 0.750 15 
WFE 0.156 0.335 0.661 15 
WTT 0.179 0.372 0.718 20 
WFE 0.173 0.368 0.708 20 
WTT 0.135 0.281 0.541 25 
WFE 0.184 0.348 0.625 25 
 

Figures 5 and 6 show the models used in 
the tunnel tests and in the WFE algorithm, 
respectively. Both models are heeled by 5 
degrees, but Sstab performs the buoyancy and 
trim equilibrium computations. The wind 
direction is assumed to be from the left to right 
side of the figures. The gray areas shown by 
Figure 6 are very similar to the visible portion 
of the picture shown by Figure 5.  In these 
figures we can also observe the differences in 

the modeling of wind elements at the topside of 
the platform. 

 

 

 

 

 

 

 
Figure 5 – Tunnel test model at 5 degrees. 

 

 

 

  

 

 
Figure 6 – Sstab model at 5 degrees 

 

 

 

 

 
 
Figure 7 – Operational Draft Heeling Lever 
Curves. 

Another pair of images, now showing the 
10 degrees heeling angle are presented by 
Figures 8 and 9. In these figures the top 
compartment over the column above the flare is 
beginning to submerge.  
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Table 4 – Heeling levers for transit draft 
 25.7 m/s 37.0 m/s 51.4 m/s Degree 

WTT 0.432 0.895 1.727 0 

WFE 0.232 0.509 0.939 0 

WTT 0.410 0.850 1.640 5 

WFE 0.241 0.523 0.975 5 

WTT 0.363 0.753 1.452 10 

WFE 0.275 0.540 1.087 10 

WTT 0.342 0.709 1.369 15 

WFE 0.263 0.542 1.087 15 

WTT 0.328 0.680 1.312 20 

WFE 0.285 0.543 1.037 20 

WTT 0.294 0.610 1.177 25 

WFE 0.311 0.638 1.256 25 

 

 

 

 

 

 

 
 
Figure 8 – Tunnel test model at 10 degrees. 

 

 

 

 

 

 
 
Figure 9 – Sstab model at 10 degrees 

 

 

 

 

  

 
 
 
Figure 10 – Transit Draft Heeling Lever 
Curves. 

Figures 7 and 10 show the heeling lever 
curves for the transit and operational draft 
configurations used in our tests. 

The superstructure elements of the models 
used in the wind tunnel tests and in the WFE 
algorithm were considerably different. Another 
source of differences between the tunnel test 
results and WFE resides on the platform 
position. In Sstab the wind computations are 
performed with a consistent equilibrium (trim 
and displacement) position, what cannot be 
guaranteed for the wind tunnel tests. 
Considering these factors, the results obtained 
using WFE were very good for high angles of 
inclination, where the differences between the 
wind tunnel tests and WFE are small. 

For the low angles of inclination we believe 
the cause of the different results is the wind 
force on the columns of the platform that are 
occluded. CFD simulations on this model have 
shown that, in reality, these columns do 
contribute for the final wind force.  

Figure 11 shows a cross section of the 
model along with the wind flow lines that 
explain the differences in the result. Notice 
how the wind embraces column A and then hits 
column B. The resulting force on column B has 
not been taken into account by the WFE 
algorithm. 
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This problem of the WFE algorithm is not 
expected to happen when computing wind 
forces for ships. 

 

 

 

 

 

 
Figure 11 – Wind forces in occluded surfaces 

4. CONCLUSIONS 

Despite the differences observed in the test 
for the low angles of inclination, we believe the 
results obtained with the WFE algorithm are 
promising. 

We are working to improve the algorithm 
formulation to consider the areas that are 
significantly distant from the areas that 
shadowed them. We believe a multi-pass 
algorithm, similar to the one used in the order 
independent transparency technique (Everitt, 
2001), can be used to solve this problem. 
Equation 1 will probably need to be adapted to 
evaluate the forces in occluded surfaces. We 
plan to define coefficients for this situation by 
using CFD simulations.  

Also, an implementation of this algorithm 
using graphics processor units (GPUs) is being 
considered. 
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