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ABSTRACT  

This paper presents a set of calculations to evaluate the restoring moment of structures 
supported by an air cushion.  The air cushion is assumed to be enclosed within a number of 
compartments that are open to sea.  The height of the water plug within the compartments is thus an 
important parameter.  Calculations are verified against experimental data performed on three scaled 
model structures: 
! a closed rectangular box barge 
! a single chamber air cushion supported structure 
! a nine-compartment air cushion supported structure. 

It is found that the single chamber structure suffers from serious loss of stability, while the nine-
compartment structure is more stable than the closed box barge itself.  This is explained in terms of 
the additional stabilizing effect of the individual air cushions. 
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1. INTRODUCTION 

Air cushions are used in offshore 
applications to temporarily lighten a structure 
such as the case of a concrete gravity sub-
structure while being towed in shallow waters.  
The base of the structure may have several 
skirted compartments open to the sea.  The air 
cushions are located within the compartments, 
and sealed by a “water plug” so as to prevent 
air egress into the open water.    

The effects of air-cushion support on the 
dynamics of Surface Effect Ships (SES) with 
and without forward speed were studied by 
Kaplan et al. (1975).  A good literature review 
on this topic may be found in e.g. Graham and 
Sullivan (2002).  

A three-dimensional numerical approach to 
evaluating the dynamics of an air cushion 
structure using the boundary integral equation 

method is given by Lee and Newman (2000) 
and Pinkster (1997). Pinkster (1997) in 
particular, considered an air-cushion structure 
with various compartment configurations and 
concluded that compartmentalizing the air-
cushion chamber reduces its effect on the 
hydrodynamic stability of the body. An air-
cushion supported floating body has been 
studied experimentally in regular waves by 
both Thiagarajan et al. (2000) and Pinkster and 
Meevers-Scholte (2001).  

Chenu et al. (2004) presented the results of 
a series of experiments on 1:100 scaled models  
of a box and air cushion supported structures.  
The authors conclude that the presence of air 
cushion in general reduces the stability of the 
structure. Increasing the water plug height and 
compartmentalization stabilize the vessel.  In 
particular it was noted that a compartmented air 
cushion structure had better stability than the 
corresponding closed box structure.  This was 
an interesting observation from the 
experiments. 



 

   

On first intuition, one may be led to believe 
that the presence of internal free surfaces 
results in a significant loss of stability.  
However, it is shown through detailed 
calculations that loss of stability occurs only in 
the case of large air cushion chambers.  Upon 
compartmentalization of the base structure, 
individual cushion chambers provide a 
pumping effect which restores stability.  Our 
calculations are verified by comparison with 
the results from the inclining experiments of 
Chenu et al. (2004).   

2. THEORETICAL DEVELOPMENT 

We consider an air cushion structure and 
an equivalent box of same plan area and draft, 
Figure 1. It is acknowledged that these 
structures have different weight and centers of 
gravity.  However, from a control volume 
approach, we can see that the air cushion 
structure + entrapped water may be statically 
and dynamically compared with the equivalent 
box.  One can also contend that the restoring 
moments acting on the two control volumes 
must do work to restore the same 
displacement. We are interested in seeing if 
the restoring effects are different between the 
two cases.  The control volume method 
(similar to added weight method of damaged 
stability, e.g. Lewis et al. 1988) is 
mathematically attractive because it enables 
us to develop a correction to the equivalent 
stability of a box.  

For the case of the control volume in Fig. 
1, the net external hydrostatic moment is 
balanced by the internal moment due to 
gravity.  The hydrostatic and aerostatic 
pressures inside the compartments are internal 
forces cancelling one another in an inclined 
equilibrium state. Thus solving the problem 
reduces to finding the total mass and 
coordinates of center of gravity of the air 
cushion structure + entrained water in the 
compartments in the displaced condition (Fig. 
2). 

 

 

 

 

 
 

Figure 1. Structure geometry. 

 
2.1 Preliminaries  

We consider a compartmented structure 
similar to shown in Figure 1, with dimensions 
as shown in Table 1. The structure is given a 
set of static deflections , 1 6k kζ = L , to obtain 
the configuration of Figure 2. 
 
Table 1. Notations for dimensions 

Length L 

Breadth B 

Still water draft T 

Compartment height hc 

Compartment length l 

Compartment width b 

Number of compartments  M N×  

Initial height of water  hw 

Three coordinate systems are defined in 
Figure 2.  These are: 
! Global – (x, y, z) 
! Body fixed – (x’, y’, z’) 
! Compartment fixed – (xc, yc, zc) 

As per convention, the global and body-
fixed coordinate systems are coincident at the 
origin of time, and located at the intersection of 
the symmetry planes and the original water 
plane. The origin of the compartment fixed 
system is at the intersection of the symmetry 
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planes within each compartment and located at 
the top of the compartment (Figure 2).   

The configuration considered here always 
has a compartment centered at the origin of the 
body fixed coordinate system. Then the 
compartment indices range from (-m, -n) to (m, 
n) and  

 
 
Figure 2. Coordinate systems definition 
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Then the position vector may be written in 
the coordinate systems as  
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2.2 Air Cushion Volume and Pressure 

The initial pressure and volume of air 
within a compartment is given by 
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where pa is the atmospheric pressure.  When 
the structure is given a set of displacements kζ , 
the modified volume and pressure are given by 
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where 0
cz denotes the vertical coordinate of the 

internal water surface at the center point 
( )0 0, (0,0)c cx y = .  As long as the displacements 
are small, one could reasonably assume that the 
position of the water surface 0

cz  is 
incrementally different from the initial position 
of the water surface, i.e., 

( )0 0
c c

c wz h h z= − − + ∆  (7)

The change in pressure and volume is 
decided by the adiabatic gas 
law constantpvγ = , where γ is the ratio of 
specific heats for air. Substituting for 0

cz into 
the adiabatic gas law and linearizing, we get  
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For practical purposes, the above equation 
results in a very small displacement of the 
internal surface, because of the relatively large 
magnitude of the denominator arising from the 
effect of atmospheric pressure.This in turn 
indicates that the air cushion performs like a 
stiff spring ensuring that the water plug 
behaves like entrapped water and is displaced 
along with the structure. 

2.3 Moments Due to Weight 

The total mass within the control volume of 
Fig. 2 is given by:  

s ij
i j
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where the mass of water within a compartment 
is given by 
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( )0
c
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The coordinates of the center of gravity of 
the control volume in the global coordinate 
system is: 
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The gravitational moment acting about the 
origin of the body fixed coordinate system is 
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To find the coordinates of Eq. (11), we can 
use the fact that the gravitational moment in the 
body fixed system is made up of the 
component structure mass and the individual 
water plug masses.  Denoting the centroids by 
the subscript g, we get 
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The first term on the right side of Eq. (15) 
denotes the structural mass component.  The 
second term denotes the moment due to the 

position of the water masses and their 
consequent moments about the origin of the 
compartment-fixed system.  These moments 
are quite important, since the incompressibility 
of the air cushion results in the water plug 
moving with the structure. The last term 
denotes the moments due to the position of the 
center of gravity of the water masses with 
respect to the compartment coordinate system, 
and gives rise to the effects of the internal free 
surface.  Upon evaluation of the centroid of the 
water plug in the displaced condition, we can 
find that 

3

5

3

4

12

12

2

c
ij g

c
ij g

c w
ij g w c

l bm x

lbm y

hm z lbh h

ρ ζ

ρ ζ

ρ

= −

=

 = − 
 

(14)

These are readily seen to be the terms due 
to internal free surface, and the last term is 
merely the linear term without any influence of 
the displacements. 

Various terms may be substituted and the 
moments evaluated.  The final results are 
shown in Eq. (15) and (16). Balance of forces 
between buoyancy and weight for the control 
volume provides the restoring moments in roll 
and pitch.  Denoting the restoring coefficients 
as C44 and C55, we get the expressions as 
shown in Eq. (17) and (18).  Dr in the equations 
denotes the denominator of Eq. (8). S11 and S22 
are the water plane moments about the x and y 
axes respectively.
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3. COMPARISON WITH EXPERIMENTS 

Chenu et al. (2004) reported a set of 
experiments on three models. 
! Closed bottom box 
! Box open to sea with one compartment 
! Box open to sea with nine compartments. 

All three models had common geometrical 
dimensions and draft, as shown in Table 2.  
Since the draft was kept constant, the structural 
weight was different.  The ballast weight was 
altered to provide different water plug heights 
inside the compartments.  Obtaining different 
water plug heights while maintaining a 
constant draft and even keel was a trial-and-
error exercise requiring much caution.  This 
was complicated for the one-compartment box 
because of its very marginal stability condition.  
For the nine-compartment box, the difficulty 
was in obtaining uniform air pressure in all the 
compartments.  All these gave some element of 
uncertainty in the experiments. 

Inclination tests were performed on the 
model to ascertain the restoring moments and 
from that the metacentric heights, as reported  

by Chenu et al. (2004).  In this paper, we 
consider the restoring moments and compare  

 

them with the formulations derived in the 
previous section. 
 
Table 2. Experimental particulars 

Quantity Symbol Value 
Length L 0.5 m 
Breadth B 0.5 m 
Draft T 0.1 m 
Box model   
Structure mass  24.25 kg 
Vertical center of 
gravity 

 -0.01 m 

One – compartment 
model 

  

Compartment height hc 0.085 m 
Compartment length l 0.47 m 
Compartment width b 0.47 m 
9-compartment model   
Compartment height hc 0.085 m 
Compartment length l 0.154 m 
Compartment width b 0.154 m 

Figures 3 and 4 show comparisons between 
experiments and theory for restoring moments 
in roll at four different values of water plug 
height.  It is seen that the comparison is within 
10% and the trends are captured by the theory. 
The margin of error in the figures is in line 



 

   

with the level of uncertainty in the 
experiments.  Further, the comparison is 
limited to four data points and firm conclusions 
need more data.  This deficiency will be 
redressed in the future. 

For comparison purposes, the restoring 
moment for the equivalent box was evaluated 
as 40.8 N-m.  Both models clearly show a 
monotonic increase of the restoring moments 
with the height of the water inside the 
compartments.  This increase is also captured 
by the theoretical formulation. 

Apart from experimental uncertainty, one is left 
to wonder if nonlinear terms ignored in the 
formulations may be of importance to bridge 
the gap.  This aspect will be clarified with more 
experimental data. 

For the one-compartment model, the 
internal free surface destabilizes the model and 
almost cancels the effect of the external free 
surface.  The remaining terms of the water plug 
contribute to a marginal stabilizing effect, 
which is seen in Figure 3. 

Thiagarajan and Morris-Thomas (2006) 
have postulated that the air cushion structure 
may be likened to an equivalent shallow box 
whose draft is adjusted to incorporate the effect 
of the water plug.  Their dynamic analysis 
shows good correlations between simple 
theoretical formulation and experiments in 
heave and pitch.  We can evaluate the restoring 
forces for a shallow box whose draft is (T-hw) 
and these are shown in Figure 5.  The 
comparison is very interesting.  The 
experimental data is encased between the two 
theoretical formulations.  One could argue that 
the main difference in the theoretical 
formulations is the stiffness of the internal 
water surface.  For the equivalent shallow box, 
the internal surfaces are solid, and hence 
provide maximum restoring moment.  
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Figure 3. Restoring moment vs. water plug 
height for the one-compartment model 
 

Nine-Compartment model
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Figure 4. Restoring moment vs. water plug 
height for the nine-compartment model 

The theoretical formulation that incorporates 
the internal effect shows that the destabilizing 
effect of the internal surface is offset by the 
physical displacement of the water plugs to 
balance the internal and external pressures.  The 
actual experimental data seems to be somewhere 
in between. Further experimental data is needed 
to confirm the actual trends. 

4. CONCLUSIONS 

The theoretical formulations shown in the 
paper comprise the effect of various 
components that affect the stability of an air 
cushion platform. A control volume approach  
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Figure 5. Comparison of stability of a nine-
compartment model with a shallow box 
 
is used where the water masses are treated as 
added weights.  The resulting formulations are 
closed form expressions for the restoring 
moments in roll and pitch.  The formulations 
are compared with experimental data and the 
comparisons are shown to be within 10%.  It is 
shown that the destabilizing effect of the 
internal free surface is offset by the 
displacement of the water plugs with the 
structure. A nine-compartment structure thus 
has more stability than an equivalent box of the 
same draft.  If the draft is altered to account for 
the height of the water plug, then the restoring 
moments are shown to be higher. 
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