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ABSTRACT 

Stability and rolling of a vessel loaded with elastically movable cargo (EMC) are studied. 
Springing and being deformed such cargo shifts down and aside causing variations in mass moment 
of inertia of an oscillatory system, position of ship�s gravity center and appearance of an additional 
heeling moment. Under assumption of small angles of inclinations the differential roll equation is 
analyzed for a vessel loaded with EMC which mass moment of inertia is varying harmonically with 
incoming waves frequency. The parametric resonance conditions are formulated. 

The nonlinear differential roll equation for finite oscillations of a vessel loaded with EMC is 
presented and the loss of stability conditions are studied. Theoretical points are illustrated by calcu-
lation results for motor vessel �Rechitsa�. 
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1. INTRODUCTION 

Motor vessel �Rechitsa� of the Soviet Da-
nube shipping company, making trip from port 
Reni (Danube river) to port Alexandria with a 
cargo of a rolled wire in coves, loaded by bulk, 
tipped and sunk on November, 26th, 1976 at an 
exit to Mediterranean sea. 

According to the testimony of the survived 
crew members during the moment of accident 
there were force 7 sea waves, thus the vessel 
was rolling with the amplitude of 100 � 120 on 
both sides. Having wind heel nearby 20 and 
making a sharp turn aside for a divergence with 
a meeter, motor vessel �Rechitsa� at the next 
inclination has tilted on a port side up to 20 - 
250. The vessel has not returned to the vertical 
position and at several subsequent fluctuations 
the angle of inclination on a port side continued 
to increase. After 8 - 10 minutes the vessel has 

laid down on a port side, then was turned over 
bottom up and has sweepingly sunk. The in-
crease of heal angle was escorted by a hum, a 
gnash, perceptible hull vibration. 

Onboard a vessel there was a cargo of a 
steel rolled wire in coves, loaded by bulk in all 
eight cargo compartments. The cove of a rolled 
wire has the form of spring ring - a torus of 1,2 
m in diameter and weight of 0.8 т. 

The analysis of ship documentation has 
shown that at the departure the vessel com-
pletely met the stability requirements of the 
Register of Shipping of the USSR. The rolled 
wire in coves had never been mentioned in any 
official normative document as a cargo which 
is dangerous for ship stability conditions. Thus 
no resolutions existed regarding special meas-
ures to be taken during the loading of a vessel 
with EMC. 

The official investigation, including both 



 
 

 

calculational analysis and special natural experi-
ments, was performed after loss of a vessel. This 
investigation allowed to establish the following 
facts: 
! the cargo of rolled wire steeped by bulk pre-

sents a continuous springing mass in which 
under the act of gravity and vibration appre-
ciable elastic and residual deformations of 
compression and shifting are obtained, 

! the deformability of this cargo was studied 
experimentally by keeling of a tank filled 
with it. It was shown that modification of a 
specific loading volume of that cargo varied 
from 1.8 - 1.9 m3/т up to 1.3 m3/т during the 
inclination, 

! experiments with the tank have also shown 
that if the heel angle exceeded 180 the cargo 
filling tank space not completely started to 
shift aside, keeping its free surface close to 
horizontal level. 

The presented special properties of a cargo 
could render significant effect on actual stability 
of a vessel (Bondar V.M., 1999; Sizov V.G., 
1999). This effect has been strengthened owing 
to incomplete filling of cargo compartments at 
loading and the subsequent self-packing of cargo. 
So at the moment of accident more than 25% of 
the volume of total space in the upper part of 
cargo compartments was empty. Formation of 
voids promoted shifting of cargo after the vessel 
reached angle exceeding 180. 

The mentioned special properties of a cargo, 
manifested during oscillating of a vessel in 
waves, their probable role in outcome of accident 
with �Rechitsa�, lack of precise rules on convey-
ance special cargoes with similar properties (rub-
ber, wool and wooden chips in bales) if they are 
steeped by bulk and not shared with rigid separa-
tion, cause an imperative need of comprehensive 
study of dynamics of the vessel, loaded with 
EMC under heavy wave conditions. 

Among prime follows: 
! to a evaluate necessity of taking into consid-

eration fluctuations of mass moment of iner-
tia of cargo and vessel, 

! to find differential rolling equation for a ves-
sel taking into account particular properties 
of EMC, 

! to conduct the analysis of mentioned rolling 
equation for a vessel with EMC and to out-
line the zones with stable and unstable solu-
tions, 

! to illustrate the obtained results by predicted 
data for motor vessel �Rechitsa�. The main 
characteristics of motor vessel �Rechitsa� 
are given in table 1. 

 
Table 1. � The characteristics of motor vessel 
�Rechitsa� 

Length between 
perpendiculars 

⊥⊥L
 

109.0 

Breadth B  16.6 
Depth D  8.36 m 
Draft d  6.53 m 
Displacement ∆  8420 t 
Load weight P  4032 t 
Volume of cargo 
spaces V  6885 m3 

Mass moment of 
inertia of vessel 
(including water added 
mass moment) round 
longitudinal axis 

xJ  
30325 
t⋅sec2/m 

Height of gravity 
center of vessel (at the 
end of loading) 

0
gz  6.34 m 

Height of gravity 
center of vessel before 
accident 

gz  6.06 m 

Let's notice that lowering of ship's gravity 
centre before accident in comparison with the 
moment at the end of her loading is caused by 
compression of EMC.  

2. EFFECT OF EMC MASS MOMENT 
OF INERTIA FLUCTUATIONS ON 
ROLLING OSCILATIONS OF 
VESSEL 

Let's consider oscillations of vessel with pe-
riodically varying mass moment of inertia of 
EMC loaded on board (Sizov V.G., 2002). 



 
 

 

The mass moment of inertia of vessel is 
represented in the form 

 
cx IIJ += 1 , (1)

 
where 1I  is a constant component of mass 
moment of inertia of a vessel (moment of iner-
tia of added mass of water included); cI  mass 
moment of inertia of strained and displaced 
part of cargo. 

Let's present cI  in the form 
2

0 mriIc += , (2)
 

where m  is a mass of straining and displacing 
cargo; tsinrr σ0=  is radius of inertia of mass 
m ; σ  is frequency of encounter; 0i  - inertia 
moment of mass m  at it�s the most compact 
disposition relatively axis of fluctuations. 

Assuming 00 IiI =+ , we receive 
 

( )tsinItsinmrIJx σεσ 2
0

22
00 1+=+= , (3)

where 
0

2
0

I
mr

=ε , and it is accepted 1<<ε . 

In a problem considered it is impossible to 
use the traditional equation of rolling which is 
fair for a constant mass moment of inertia of 
vessel. Using a principle of conservation of an-
gular momentum for oscillating system, we re-
ceive in case of small inclinations 
 

tsinKKNJ
dt
d

x σα=θ+θ+





 θ

•••

0 , (4)

 
where N  is drag coefficient of rolling; 

hK ∆=  - coefficient of transverse stability; h  
- metacentric height; 0α  - an effective wave 
slop angle of incoming waves with angular fre-
quency σ . 

From (4) it is found 
 

tsinKKN
t

JJ x
x σα=θ+θ+θ

∂
∂+θ

••••

0 , (5)

and 

tsinI
dt

dJ x σσε= 20 , (6)

( ) ( ) ( )22

0
2

0

11
1

11 ε+σε−=
σε+

= Otsin
ItsinIJx

(7)

Let us take a new variable 

( ) ,dttBexp 





θ=χ ∫2

1  (8)

where ( )
x

x

J
JNtB
•

+= . 

From the equation (5) it comes 
 

( ) ( ),Otsintsinn

BBn

22
0

2

22

1

2
1

4
1

ε+σε−σα=

=χ





 −−+χ

•••

 (9)

( ) ,
I
N;tcostsintB
0

2
2

2
2

=ν





 σν+σσ+νε−ν=  

( ) ( )

( ) ,Otsin

tcos
dt

tdBtB

2

2

2

22

ε+σενσ−

−σεσ==
•

 

 
where 0IKn =  - frequency of free oscilla-
tions of vessel. 

The equation (9) takes a form 
 

( )

( ) .sinsinn

tcosn

στε−στα=

=χ











σ







 ν−σε−ε−ν−+χ
••

2
0

2

2
2

2
2

1

2
4

1
4 (10)

 
Let�s enter dimensionless time tστ = , so 

2

2
2

2

2

τ
χσ=χ=χ

••

d
d

dt
d  and the equation of oscilla-

tions (10) rewrite in the form 

( ) ( )sinsinncosqa
d
d τε−τα

σ
=χτ−+

τ
χ 2

02

2

2

2
122

 
(11)

( ) 








σ
ν−ε=ε−

σ
ν−

σ
= 2

2

2

2

2

2

4
1

2
1

4
q,na . 

Besides forced oscillations under exciting 
moment action described by (11) parametric 



 
 

 

oscillations can arise defined by the uniform 
equation 

 

( ) 0222

2
=χτ−+

τ
χ cosqa

d
d . (12)

The equation (12) is an initial form of 
Mathieu equation. Solutions of this equation 
have oscillatory character. Depending on val-
ues of parameters a  and q  these oscillations 
have limited or unlimited amplitude increasing 
by the exponential law. Borders of parameters 
a  and q , zones corresponding to stable and 
unstable condition of the oscillatory system 
described by the equation (12) can be find on 
Eince - Strett diagram (Smirnov, 1968). In our 
case the value of q  is small, and the least ε  
value of relative change in mass moment of 
inertia of a displaced cargo at which amplitude 
of oscillations increases infinitely can be find 
from inequality 

 

2

4
2

2

2
2

νσ

ν

ε
−

−
>

n
. (13)

On returning from χ  to roll angle θ  an ex-
ponential multiplier appears 

 

( )

( )tcosexp

dttBexp












δ−σ

σ
ν+ε+






 ε−ν−=

=



− ∫

2
4

1
42

1
2

2
1

2

2

 

(14)

This multiplier ensures damping action on 
oscillations. The solution of equation (12) can 
be find in the form 

 
( ) ( )τ+τ=χ µτ−µτ

21 fefe , (15)
 
where ( )τ1f  and ( )τ2f  - are periodic functions 
of τ . 

It allows to write down additional condition 

for excitation of parametric oscillations with 
increasing amplitude 

 







 −>

2
1

2
ενµ , (16)

 
as soon as the average value of second compo-
nent (14) for a period of oscillations is equal to 
zero. 

It is obvious that damping action narrows 
area where parametric resonance exists. 

The described method is applicable for an 
estimation of a principal opportunity of exis-
tence of a parametric resonance in rolling for 
vessel �Rechitsa� in her last trip. Fluctuation of 
cargo mass moment of inertia which has arisen 
in connection with elastic and residual strains 
of EMC has been considered only. Change of 
mass moment of inertia of cargo due to its 
transverse displacement at heel is not consid-
ered here. It is made in following section of 
work. 

The analysis of documents concerning the 
loading of the vessel, results of experiment and 
calculations allowed to find that inertia mo-
ments in (2) have values msectIc

211959 ⋅= , 
msecti 2

0 10025 ⋅= , msectI 2
0 28391 ⋅= , so 

that 0680.=ε . 

The value of 0IN=ν  as function of a 
wave length (frequency of oscillations) was 
calculated according to (Remez J.V.,1983). 

On the basis of (13) maximum values of 
metacentric height Mh  were defined as func-
tion of wave length λ . If for a given loading 
conditions ( )λ< Mhh , parametric resonance 
under such wave excitation is possible, but if 

( )λ> Mhh  the parametric resonance does not 
occur. Values of Mh  for wave lengths λ  are 
given in table 2. Here the minimal values of 

minµ  from (16) are also presented. 



 
 

 

Table 2 � Values of metacentric height Mh  
λ , m 45 67 95 140 160 

Mh ,m 0.310 0.210 0.148 0.100 0.090

minµ  0.020 0.024 0.025 0.028 0.030

It is visible that the accepted scheme does 
not allow to find the possibility of parametric 
resonance appearance as soon as actual meta-
centric height values for motorship �Rechitsa� 
both on departure ( 360.h =  m) and before cap-
sizing ( 640.h =  m due EMC compression) ex-
ceeded values given in table 2. 

Nevertheless, results of the analysis have 
proved the necessity of taking into account 
change of mass moment of inertia for EMC in 
calculations of rolling for vessel with specific 
cargoes of EMC type. 

3. THE DIFFERENTIAL ROLL 
EQUATION OF A VESSEL WITH 
EMC AND ITS ANALYSIS 

Let's find a differential roll equation of the 
vessel transporting EMC, taking into account 
its special properties related with the advent of 
variations in mass moment of inertia, position 
of ship gravity center, appearance of additional 
heeling moment. 

Considering the form of equation (4), the 
differential roll equation of a vessel in regular 
beam sea can be presented in the form 

 

( ) ( )
( ).tsinm

MmN
dt
J

J x
x

σακ=

=θ+θκ+θ+θ
∂

+θ

θ

θ

••••

0

(17)

Here in addition to (4) following symbols 
are introduced 
 

( )θm  - restoring moment, 
( )θM  - heeling moment called by shifting 

EMC aside, ( )θM  and ( )θm  are acting oppo-
site, 

θκ  - reduction coefficient for exciting and 

restoring moments (Remez, 1983) 
 
Let's note, that 
 

( )θ+= IIJ x 0 , (18)
 

where ( )θI  is a variable part of mass moment 
of inertia of oscillating system due to compres-
sion and shifting aside of EMC. 

Considering (18), we find 
 

( ) ( ) •
θ

θ
θ=θ

θ
θ=

d
dI

dt
d

d
dI

dt
dJ x , (19)

 
Let's introduce the dimensionless time 

tσ=τ  so that 
τ∂

∂σ=
∂
∂
t

, 
τ
θσ=θ

•

d
d , 

2

2
2

τ
θσ=θ

••

d
d  and rewrite the equation (17) 

 

( )[ ] ( )

( ) ( ) ( ).sinmMm
d
dN

d
d

d
dQQ

d
d

τα
σ
κ

=
σ

θ+
σ

θκ
+

+
τ
θ+








τ
θ

θ
θ−θ−

τ
θ

θθ
0222

2

2

2
1

(20)

 

In (20) magnitudes of ( ) ( )
xJ

IQ θ=θ , ( ) =θm  

( )
xJ

m θ= , ( ) ( )
xJ

MM θ=θ are introduced. 

The damping coefficient N  is determined 
under the supposition that the viscous damping 
moment is proportional to square of oscillation 
velocity and linearised using energy reasons 

(Remez, 1983), so that 
xJ
NN σ= , and N  

depends on displacement ∆ , mass moment of 
inertia xJ , metacentric height h , the ration 

d
B  and hull coefficients δ  and α . Thus all 

items in (20) are dimensionless. 

The stability diagram ( )θm , accepted in the 
subsequent calculations, corresponds to a 
maximum compression of EMC directly before 
an accident ( h =0,64 m, gz =6,06 m). The mass 



 
 

 

moment of inertia ( ) >θθI 18° is taken under 
supposition, that the side shifting of cargo 
arises when roll angles θ  exceed the angle 
ϕ =18°. It is accepted that from a state of 
maximum vertical compression the free surface 
of cargo, remaining flat, is turned to tilted side 
on angle ϕ−θ  when the vessel�s heel angle 
equals θ . The cargo fills free volume of com-
partment and amount of cargo remains con-
stant. 

Functions ( ) ( ) ( )θ
θ
θθ m,

d
dQ,Q  and ( )θM  are 

calculated using arrangement plans in the form 
of polynomials of heel angle θ . It has been 
considered, that  

( ) ( )θ=θ− QQ , ( ) ( )
θ

θ−−=
θ
θ

d
dQ

d
dQ , 

( ) ( ),mm θ−−=θ  ( ) =θM  
( ) 0>θθ−−= ,M . 

Damping coefficient N  and reduction coef-
ficient θκ  are presented in the form of poly-
nomials of incoming wave length λ . 

The primal problem for examination of dy-
namics of the system governed by a differential 
equation (20) consists in studing the structure 

of phase plane 






 θθ
•

,  stuffing with phase tra-

jectories. (Butenin N.V., Naimark Y.I, Fufaev 
N.A., 1987). 

For this purpose it is enough to examine the 
behavior of special trajectories for the homo-
geneous equation corresponding to equation 
(20). The interior forces are counterbalanced in 
fixed points where 0=θ=θ

•••
. Limit cycles are 

closed curves on a phase plane to which aspire 
eventually ( )+∞→τ  certain set of phase tra-
jectories. Separatrices separate those parts of 
phase plane where phase curves describe quali-
tatively equivalent behavior of oscillatory sys-
tem. 

Let's find the fixed points of equation (20) 

on a phase plane where 0=θ=θ
•••

. 
 
Introducing a new variable 
 

( )[ ] θ+θ−θ=
•

NQK 1 , (21)
 
instead of equation (20) we find system of two 
first order differential equations for fixed 

points 0=θ
•

 and 0=
•
K  

 

( )
( ) ( )










σ
θκ+θ−=

θ−
θ−=θ

θ
•

•

2

1
mMK

;
Q

NK

 (22)

 
From the first equation of system (22) it 

follows that =θ
•

0 along straight line θ= NK  
on the plane ( )K,θ . From the second equation 

of (22) it comes that =
•
K 0 in points iθ which 

are zeroes of the function ( ) ( )θκ+θ θ mM . Get-
ting from (21) 

( )[ ] ( ) 2

1 





θ

θ∂
θ∂−θ−θ=

•••• QQK
•
θ+ N , we dis-

cover that in the fixed points 
••
θ =0, so function 

( )θQ  is continuous. Taking into consideration 
oddness on θ  of function ( )θm  as well as the 
fact that ( ) ≡θM 0 for ≤θ 18° and for >θ 18° 
this function also is odd on θ , we find that sys-
tem (22) and naturally the equation (20) have 
three fixed points: one in zero of phase plane 

( 0=θ=θ
•

) and two others with abscissas cor-
responding to zeroes of polynomial function 

( ) ( )θκ+θ θ mM . This function is governed by 
properties of vessel as well as reduction coeffi-
cient θκ  that is additionally defined by incom-
ing wave length. The calculations fulfilled for 
�Rechitsa� have shown that in a range of 

1600 ≤λ< m the fixed points have abscissas 
1θ = 0,38, 2θ = -0,38, 3θ = 0 which practically 

do not depend on wave length λ . 

Topological type and stability of fixed 
points we can define, exploring the linearized 
system, gained from (22), in a neighborhood of 
these points. Let εu  be a small vicinity of fixed 
points ( ) 210 ,, ii =θ . For any point of 



 
 

 

( )Ki ,εε+θ θ  from the vicinity of εu  it comes 
with an accuracy ( )22

KO ε+εθ  
 









ε
θ∂

∂+ε
∂
∂=ε

ε
θ∂

∂+ε
∂
∂=ε

θ

•

θθ
•

,F
K
F

;F
K
F

KK

K

22

11

 (23)

 

where ( )θ−
θ−=

Q
NKF

11 , ( ) ( )
22 σ

θκ+θ−= θmMF . 

Roots 21,p  of characteristic polynomial of lin-
ear system 

 
( )[ ]
( ) ( )[ ] 210

1 222

,i,mM

pNpQ

ii

i

==θκ+θ
θ∂
∂+

+σ+θ−σ

θ

 (24)

 
are determined in the form 
 

( )[ ] ( )21
12 2

2
,j

Q
DNp
i

j =
θ−σ

±σ−= . (25)

Here D  is discriminant of a characteristic 
polynomial (24).The topological type of the 
fixed points and behavior of dynamic system in 
their neighborhood are defined by roots (25). If 
roots ( )21,jp j =  are complex conjugate the 
corresponding fixed point is a focal point. The 
focal point is stable, if the real part of roots is 
negative and it is unstable if the real part is 
positive. When roots ( )21,jp j =  are real and 
have one sign the corresponding fixed point is 
a knot. If both roots are negative this is a stable 
knot, otherwise a knot is unstable. If roots 

( )21,jp j =  are real with different signs this is 
saddle. 

From (25) it follows, that the type of the 
roots ( )21,jp j =  for dynamic system is com-
pletely determined by discriminant D . 

For 018≤θi  the discriminant is 
 

( )[ ] ( )
θ∂
θ∂

θ−κσ−σ= θ
i

i
m

QND 14 224 . (26)

 
In this range of θ  the only fixed point 

0=θi  exists. 
It is a stable focus if 
 

( )[ ]014

22

Q
NJ

h x

−κ
σ

>
θ∆

. (27)

 
When 018>θi  the discriminant is 
 

( )[ ] ( ) ( )[ ]iii mMQ

ND

θκ+θ
θ∂
∂θ−κσ−

−σ=

θθ 14 2

24

. 

(28)

 
For fixed points 1θ  = 0.38, 2θ  = − 0.38 

( ) ( )[ ] 0<θκ+θ
θ∂
∂

θ ii mM . From (25) and (28) it 

comes that for fixed points ( )21,ii =θ  among 
two roots (25) one is positive and another one 
is negative, so both fixed points ( )21,ii =θ  are 
saddles. 

Trajectories on phase plane ( )K,θ  are de-

termined from obvious equality •

•

θ
=

θ
K

d
dK . Sub-

stituting into this equality corresponding ex-
pressions from system (22), we find the differ-
ential equation of trajectories in the form 

 

( ) ( ) ( )[ ] ( )[ ]11
2

=θ−θ+θκ
σ

+
θ

θ− θ QMm
d
dKNK

 

(29
)

If there is no damping 0=N , this equation 
is easy to integrate and considering (21) to 
write down the equation of a set of phase tra-
jectories 

 

( )[ ]
( ) ( )

( ) Cd
Q

Mm
Q

=θ
θ−

θ+θκ
θ−σ

+





θ θ

•

∫ 11
2

2

2

. 

(30
)

The phase trajectories corresponding to sta-
ble solutions with various values of C  are 
closed curves. They lay inside of area limited 
by separatrices for which constant C  in equa-
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1

2

tion (30) is easy to find, having substituted in it 
coordinates of saddle points 21,θ . The position 
of these points do not depend on magnitude of 
N , therefore the trajectories for stable solu-
tions of system with damping 0≠N  will not 
go out the area limited by separatrices (30). On 
fig. 1 the phase portrait of the homogeneous 
system without damping, on fig. 2 for this sys-
tem with damping and on fig. 3 phase portrait 
of the system with damping and exterior peri-
odic perturbation are shown. On fig. 4 free os-
cillations of system without damping (1) and 
with damping (2) both in phase and time spaces 
are shown. 

 

 
Figure 1 The plane portrait of the homoge-
neous system without damping ( 0=N ) 
 

 
Figure 2 The plane portrait of the homoge-
neous system with damping ( 0≠N ) 
 

 

Figure 3 The plane portrait of system with 
damping and exterior periodic perturbation 

 
For comparison the dynamic system is 

studied for rolling of the same vessel under 
supposition that the load is unmovable. In this 

case ( ) 0≡θQ ( ) 0≡
θ
θ

d
dQ , ( ) 0≡θM  and 

differential roll equation looks like 
 

( ) ( )τα
σ
κ=θ

σ
κ+θ+θ θθ

•••
sinmmN 022 . (31)

 
 

Figure 4 Free oscillations of system with 
and without damping in phase and time spaces 

Comparing phase portraits of the homoge-
neous differential equations corresponding (20) 
and (31), it is easy to reveal qualitative differ-
ences in behavior of corresponding oscillating 
systems. 

The differential equation +θ+θ
•••

N  

( ) 02 =θ
σ
κ+ θ m  has three equilibrium points at 

phase plane, one of which 





 =θ=θ

•
0  is a fo-

cal point, and two others 1θ  and 2θ  are saddles 
( 0121 >θθ−=θ , ). It is easy to show that 1θ  
and 2θ  correspond to zeroes of function ( )θm  
i. g. the angles vθ±  of vanishing stability on 
starboard and port sides. Thus, the area with 
stable oscillations of system appears for differ-



 
 

 

ential equation (31) significantly larger than 
analogous area for differential equation (20). It 
means that some situations defind for vessel 
with EMC by means of differential equation 
(31) as safe, can lead to real capsizing of a ves-
sel if the capsizing comes from solution of 
equation (20). 

Two rolling processes of motor vessel 
�Richitsa� with EMC under similar wave con-
ditions are given in fig. 5. The process marked 
by 1 corresponds to supposition that loaded 
cargo is unmovable and equation (31) is used, 
the process marked by 2 correspond to equation 
(20) where all special properties of EMC are 
taken into consideration. The result is obvious: 
to predict dangerous situation one has to take in 
mind specific qualities of EMC and use for cal-
culation differential equation (20). 
 

 
Figure 5 The comparison of rolling processes 

4. CONCLUSIONS 

The vessel, loaded with EMC, possesses 
special dynamic properties cousing the unusual 
response to incoming waves when navigations 
in heavy seas. 

Special properties of a cargo lead to: 
! fluctuation in mass moment of inertia of a 

cargo that provocates a parametric reso-
nance of a vessel rolling; 

! appreciable changes on vertical position of 
ship's gravity centre due to condensation 
and deformation of a cargo; 

! action of additional heeling moment due to 
lateral cargo motion when ship is oscillat-
ing. 

These reasons have been considered when 
deducing differential roll equation for vessel 
with EMC. The specified differential equation 
has basic differences from a standard roll equa-
tion in connection with the account of fluctua-
tions in mass moment of inertia and occurrence 
of additional heeling moment of a cargo trans-
ferred due to rolling. 

Applying practice of introduction reduction 
coefficient to disturbing moment, authors have 
considered it natural to enter the same coeffi-
cient into restoring moment as the hydrody-
namic nature of both moments is identical. 

The situation is demonstrated that under 
same loading and wave conditions the solution 
of traditional roll equation which doesn�t take 
into consideration specific cargo properties 
demonstrates a normal rolling process while 
specialized equation  when the decision of the 
standard differential equation demonstrated in 
this report and accounting special properties of 
EMC shows the capsizing of vessel.  

Results of this research demonstrate the vi-
tal necessity of introducing into a known line 
of moving cargoes (liquid, hanging, rolling, 
loosing) an additional one � elastically mov-
able cargo (EMC). It is necessary to supply the 
navigators transporting this cargo with reliable 
regulating documents. 
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