

Using the Graphics Hardware to Compute Wind Forces

Sérgio Alvares R. de S. Maffra, Tecgraf/PUC-Rio

 Luiz Cristovao Gomes Coelho, Tecgraf/PUC-Rio

 Guilherme Tavares Malizia Alves, Tecgraf/PUC-Rio

 Mauro Costa de Oliveira, Petrobras/Cenpes

Carlos Gomes Jordani, Petrobras/Cenpes

ABSTRACT

We propose an alternative procedure to compute the forces and moments resulting from the
action of winds on a vessel, by using a computer generated image to determine the projected area of
its exposed surfaces. The results obtained by the new method are then compared with real wind
tunnel tests.

Keywords: wind force, center of pressure, rasterization,

1. INTRODUCTION

According to IMO (2001), the forces and
moments resulting from the action of winds on
a vessel can be computed as a function of the
projected area of the objects, of its shape
coefficients, of its height coefficients, of the
velocity of the wind and of the density of the
air:

AVCCF HS
2

2
1 ρ=

(1)

F Wind force

SC Shape coefficient

HC Height coefficient
ρ Density of the air
V Velocity of the wind
A Projected area of exposed surfaces

Although much simpler than a
computational fluid dynamics simulation, the
methodology suggested by IMO can be
challenging when one deals with objects that
present a complex geometry. The challenge, in

these cases, is concerned with the
determination of the projected area of all
exposed surfaces of the vessel. If one decides
to work directly with the geometry of the
object, Boolean operations must be used on
polygons (intersection, subtraction, addition,
etc) which are hard to implement and are also
error prone due to imprecision in the
representation of floating point numbers.

As an alternative, IMO allows the use of
wind tunnel tests on a representative model of
the unit instead of the formula above. Wind
tunnel tests however are not the most practical
approach, especially when the vessel being
tested is in an initial design phase. Changes in
the design will probably occur and invalidate
the tests. Therefore, a less expensive
computational procedure can be of great value.

Since IMO requires that wind forces should
be considered from any direction relative to the
unit and with different values of wind velocity,
the analysis of wind heeling forces using
computational fluid dynamic (CFD)
simulations can also be a costly procedure,
given the large number of different simulations
and the large number of meshes that must be
constructed for these simulations.

~

We propose an alternative procedure to the
direct use of geometric primitives when
evaluating Equation 1. This alternative, as
implemented in all modern graphics hardware,
is to convert every geometric primitive into a
set of pixels, what turns the Boolean operations
trivial. Once the set of visible pixels is
determined, which correspond to determining
the visible surface of the object, one must only
compute the summation of their area to obtain
the projected area needed to compute the wind
force. As most of the operations necessary in
this algorithm are already implemented in the
hardware of all commercial graphics card, an
efficient implementation of the algorithm is not
hard to achieve.

When computed according to our proposal,
the projected area is actually, an approximation
of the real area. This is a consequence of the
transformation of the geometric primitives into
a set of pixels. We also present in the paper
how an upper bound of this error can be
computed.

2. COMPUTING THE WIND FORCE

The determination of visible surface (Foley
et al., 1997) is a well-known problem in the
computer graphics field. Several algorithms
have been proposed to this date, but they can
be divided in two main categories: image space
and object space algorithms (Rij, 1994).

Object space algorithms solve the visibility
problem by working directly with the
geometric primitives, trying to sort them from
the farthest to the closest one with respect to
the camera (viewer). When the primitives
cannot be sorted, Boolean operations must be
used to settle the problem.

Digital images are usually represented as a
rectangular matrix of numerical values used to
represent different colors. Image space
algorithms explore this representation directly,
avoiding most of the complex geometric
operations that object space algorithms must

deal with. Image space algorithms are also
naturally parallel, what makes them easier to
implement efficiently in hardware. In this
work, we show how the Z-Buffer algorithm
(Foley et al., 1997) can be used to define the
wind exposed areas of a complex model.

2.1 The Model

The model of a floating system may be
constructed as a set of individual compartments
that define the complete stability model. With
this approach, we may classify these
compartments as external (Hull body, Deck
elements, Hellideck) or internal (Void spaces,
Elevators, Access trunks, Chain lockers, etc),
according to its wind exposure. Figure 1 shows
the external compartments of a semi-
submersible oil platform. Each individual
compartment is composed of a set of planar
faces, each face is defined by a set 3D
positions, which are related to a global
Cartesian coordinate system.

2.2 Determination of Visible Surface
Using Vector Algebra

In a traditional approach, the visible
portions can be computed using classical vector
algebra in the 3D coordinate space. If we
assume that the compartment faces do not
overlap, a BSP Tree (Foley et al., 1997)
technique can be used to sort the faces and to
define the visible ones, although an algorithm
to construct such representations can become
slow when the number of faces increases
significantly. Those algorithms should be
coupled to a Boolean operator tool (Coelho et
al., 2000) to obtain a consistent set of
polygonal areas, necessary to represent the
remaining visible faces.

Figure 1 shows the external model of a
semi-submersible oil platform. If we imagine
the wind acting in the same view direction (the
direction of projection, or DOP) adopted to plot
the drawing, the computation of the visible

areas in the detail shown by Figure 2 is an
example of the use of the Boolean operations
necessary to determine the visible areas near
the helideck where there are intersections
between several possible visible areas, that
must be trimmed.

Figure 1 – Semi-submersible oil platform.

Figure 2 – Detail near the helideck.

2.3 Determination of Visible Surface
Using the Graphics Card

To produce the visible surfaces of Figure 1,
a video card that implements the OpenGL
library primitives was employed. The same
procedure used in the generation of the image
can be used to determine the projected area of a
vessel that is exposed to the wind.

The graphics library used in this work
(OpenGL) contains an implementation of the
Z-Buffer algorithm. As mentioned before, this

algorithm avoids the sorting and the Boolean
operations by transforming each of the
geometric primitives into a set of pixels that are
tested against each other for visibility. The
visible pixels are then stored in the final image.
The next sections explain how to configure the
Z-Buffer algorithm in order to generate an
image appropriate for the computation of wind
forces and how to compute these forces using
such an image.

2.4 Configuring the Z-Buffer Algorithm

Generating images using OpenGL can be a
complex task due to the large quantity of
options and different rendering techniques that
can be applied. Fortunately, in order to
generate images suitable for the computation of
wind forces, only a few steps are required.

The first step consists in configuring the
camera. The camera must be positioned in a
way that allows the entire object to be seen.
The viewing direction of the camera (its
direction of projection or DOP) must be the
same as the direction of incidence of the wind.
As Equation 1 requires the areas projected to
the vertical plane, the projection plane of the
camera must be a vertical plane (its up vector is
equal to (0,0,1)). Also, an orthographic
projection must be used, in order to allow a
correct measurement of areas. A perspective
projection cannot be used as it would deform
the model to create the perspective effect on
the generated image.

The second step consists in choosing
appropriate colors for the components of the
geometric models that represent the different
compartments of the floating system being
studied. After the generation of the final image
has been completed, there is no relationship
between the pixels in the image and the
compartment it represents.

Given a pixel of the image, it is possible to
determine all the parameters needed for
Equation 1 with the exception of its associated

shape coefficient, which can only be
determined by knowing the compartment
associated with a pixel of the image. The
technique to solve this problem is to use as the
color of each compartment an integer identifier
(an integer number that represents a class of
objects or a single object). As we are interested
in the exposed area of each compartment, each
compartment is assigned a unique color. In this
way, it is possible to determine the set of
visible pixels associated with each individual
compartment, by examining the colors of the
pixels.

As the lighting computations performed by
the graphics library can alter the colors it
receives as input, lighting must be disabled
when generating images for the computation of
wind forces.

After configuring the graphics library with
the procedure described in this section, one
must only render the final image to obtain the
data necessary for the computation of the wind
force.

Figure 3 shows an example of an image of
an oil platform generated using the techniques
described in this section.

Figure 3- Image for wind force computation.

2.5 Computing the Wind Force

The computation of the wind force using
the image generated according to the previous
section is similar to a numerical integration
procedure, since each pixel of the image can be
seen as an integration element. Equations 2 and

3 show how to compute the value of the wind
force and its center of pressure, respectively.

∑∑
= =

=
w

i

h

j
pijhijs AVPCPCF

1 1

2)()(
2
1 ρ

(1)

F Wind force

ijP Pixel located at position (i,j) of the
image

ρ Density of the air
V Velocity of the air

pA Area of a pixel

)(pCs Shape coefficient of pixel p

)(pCh Height coefficient of pixel p

w Width of the image
h Height of the image

∑∑
= =





=

w

i

h

j
ijpijhijsp PhAVPCPC

F
C

1 1

2)()()(
2
11 ρ (3)

pC Center of pressure

)(ph Height of pixel p

 Equation 2 depends on two functions that
have a pixel as a parameter: the shape
coefficient function (Cs) and the height
coefficient function (Ch). Both functions can
be implemented as tables to indicate their
respective results.

The shape coefficient table has colors as
indices. The same colors used to represent each
individual compartment. In this way, with the
color of a pixel, one can determine the
corresponding compartment of the floating
system and, consequently, its shape coefficient.

The table that implements the height
coefficient function is indexed by the distance
of a pixel to the surface of the sea. One of the
parameters of the camera configuration is the
region of space that is visible, which is
completely covered by the pixels of the image.
Therefore, the position of a pixel in space can
be easily determined from its position inside
the image. Then, by looking up the
corresponding height range in the height

coefficient table, the coefficient desired is
determined.

Equation 3 depends on another function
that has a pixel as parameter. This function
computes the distance of the pixel to the
surface of the sea, using the same procedure to
determine the index of the height coefficient
table.
Table 1: Height Coefficients Table

From (m) Until(m) Height Coeff.
0,00 15,30 1,00

15,30 30,50 1,10
30,50 46,00 1,20
46,00 61,00 1,30
61,00 76,00 1,37
76,00 91,50 1,43
91,50 106,50 1,48
106,50 122,00 1,52
122,00 137,00 1,56
137,00 152,50 1,60
152,50 167,50 1,63
167,50 183,00 1,67
183,00 198,00 1,70
198,00 213,50 1,72
213,50 228,50 1,75
228,50 244,00 1,77
244,00 256,00 1,79
256,00 --- 1,80

Table 2: Shape Coefficients

Shape Cs

Spherical 0.4
Cylindrical 0.5

Large flat surfaces (hull,
deckhouse, etc) 1.0

Drilling derrick 1.25
Wires 1.2

Exposed beams and girders
under deck 1.3

Small Parts 1.4
Isolated Shapes

(crane, beam, etc) 1.5

Clustered deckhouses and
similar 1.1

The previous tables present some values of
shape coefficients and an example of a height
coefficient table.

2.6 Rasterization Errors

The process of transforming a geometric
primitive (usually a polygon) into a set of
pixels is called rasterization. Whenever a
geometric primitive is rasterized there are
errors due to the discrete nature of the digital
images. Continuous lines, for example, cannot
be represented correctly on an image or on a
computer monitor. The discretization errors,
however, occur only on the border of the
primitives. Figure 4 shows how the
rasterization of some geometric primitives look
like on an image. Notice how the rasterized
primitives try to approximate the continuous
ones (marked as red lines in the figure).

Since only the pixels on borders contain
errors, it is possible to compute an upper bound
for the error on the computation of the
projected area. This upper bound is computed
by dividing the total area of pixels located on
borders by the total area occupied by pixels.
The smaller the value on this upper bound, the
better is the estimative of the wind force.

One way to reduce the rasterization error is
to increase the resolution of the image
generated. Larger images will approximate the
geometric primitives better at the cost of more
memory and more computational time for the
evaluation of the wind force and of the center
of pressure.

Figure 4- Rasterization errors.

3. RESULTS

The algorithm described in the previous
sections has been implemented in the Sstab
program (Coelho et al., 2003) and is currently
being used to calculate the wind and stream
forces of Petrobras-BR models, both in the
design stage and for existing units. The
algorithm was named WFE, whose initials
stand for Wind Force Estimator. As an example
of the use of WFE, we show some results for
the semi-submersible platform of Figures 1 and
2. The wind computations were compared with
the wind tunnel test (WTT) results.

The wind tunnel test report presents results
for the operational draft and for transit draft.
We selected the highest heeling levers that
were obtained for an angle of wind incidence
of 320 degrees with respect to the longitudinal
axis of the hull. The tests were obtained for
three different wind velocities: 25.7 m/s, 37.0
m/s, 51.4 m/s. We show the comparative
results in the Table 3.

Table 3 – Heeling levers for operational draft

 25.7 m/s 37.0 m/s 51.4 m/s Degree
WTT 0.188 0.389 0.750 0
WFE 0.127 0.252 0.519 0
WTT 0.192 0.397 0.767 5
WFE 0.127 0.278 0.563 5
WTT 0.183 0.379 0.730 10
WFE 0.140 0.268 0.560 10
WTT 0.187 0.388 0.750 15
WFE 0.156 0.335 0.661 15
WTT 0.179 0.372 0.718 20
WFE 0.173 0.368 0.708 20
WTT 0.135 0.281 0.541 25
WFE 0.184 0.348 0.625 25

Figures 5 and 6 show the models used in
the tunnel tests and in the WFE algorithm,
respectively. Both models are heeled by 5
degrees, but Sstab performs the buoyancy and
trim equilibrium computations. The wind
direction is assumed to be from the left to right
side of the figures. The gray areas shown by
Figure 6 are very similar to the visible portion
of the picture shown by Figure 5. In these
figures we can also observe the differences in

the modeling of wind elements at the topside of
the platform.

Figure 5 – Tunnel test model at 5 degrees.

Figure 6 – Sstab model at 5 degrees

Figure 7 – Operational Draft Heeling Lever
Curves.

Another pair of images, now showing the
10 degrees heeling angle are presented by
Figures 8 and 9. In these figures the top
compartment over the column above the flare is
beginning to submerge.

Operational Draft

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 5 10 15 20 25
Inclination (Degrees)

H
ee

lin
g

Le
ve

r (
m

)

Tunnel 25.7 m/s WFE 25.7 m/s Tunell 37.0 m/s
WFE 37.0 m/s Tunnel 51.4 m/s WFE 51.4 m/s

Table 4 – Heeling levers for transit draft
 25.7 m/s 37.0 m/s 51.4 m/s Degree

WTT 0.432 0.895 1.727 0

WFE 0.232 0.509 0.939 0

WTT 0.410 0.850 1.640 5

WFE 0.241 0.523 0.975 5

WTT 0.363 0.753 1.452 10

WFE 0.275 0.540 1.087 10

WTT 0.342 0.709 1.369 15

WFE 0.263 0.542 1.087 15

WTT 0.328 0.680 1.312 20

WFE 0.285 0.543 1.037 20

WTT 0.294 0.610 1.177 25

WFE 0.311 0.638 1.256 25

Figure 8 – Tunnel test model at 10 degrees.

Figure 9 – Sstab model at 10 degrees

Figure 10 – Transit Draft Heeling Lever
Curves.

Figures 7 and 10 show the heeling lever
curves for the transit and operational draft
configurations used in our tests.

The superstructure elements of the models
used in the wind tunnel tests and in the WFE
algorithm were considerably different. Another
source of differences between the tunnel test
results and WFE resides on the platform
position. In Sstab the wind computations are
performed with a consistent equilibrium (trim
and displacement) position, what cannot be
guaranteed for the wind tunnel tests.
Considering these factors, the results obtained
using WFE were very good for high angles of
inclination, where the differences between the
wind tunnel tests and WFE are small.

For the low angles of inclination we believe
the cause of the different results is the wind
force on the columns of the platform that are
occluded. CFD simulations on this model have
shown that, in reality, these columns do
contribute for the final wind force.

Figure 11 shows a cross section of the
model along with the wind flow lines that
explain the differences in the result. Notice
how the wind embraces column A and then hits
column B. The resulting force on column B has
not been taken into account by the WFE
algorithm.

Transit Draft

0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
1.600
1.800
2.000

1 2 3 4 5 6

Inclination (degrees)

H
ee

lin
g

Le
ve

r (
m

)

Tunnel 25.7 m/s WFE 25.7 m/s Tunnel 37.0 m/s
WFE 37.0 m/s Tunnel 51.4 m/s WFE 51.4 m/s

This problem of the WFE algorithm is not
expected to happen when computing wind
forces for ships.

Figure 11 – Wind forces in occluded surfaces

4. CONCLUSIONS

Despite the differences observed in the test
for the low angles of inclination, we believe the
results obtained with the WFE algorithm are
promising.

We are working to improve the algorithm
formulation to consider the areas that are
significantly distant from the areas that
shadowed them. We believe a multi-pass
algorithm, similar to the one used in the order
independent transparency technique (Everitt,
2001), can be used to solve this problem.
Equation 1 will probably need to be adapted to
evaluate the forces in occluded surfaces. We
plan to define coefficients for this situation by
using CFD simulations.

Also, an implementation of this algorithm
using graphics processor units (GPUs) is being
considered.

5. ACKNOWLEDMENTS

The authors would like to thank Petrobras,
CENPES and Tecgraf/PUC-Rio for their
support and for the opportunity of working in
this project.

6. REFERENCES

Coelho, L.C.G., Figueiredo, L.H. and Gattass,
M., 2000, "Intersecting and trimming
parametric meshes on finite-element
shells". International Journal for Numerical
Methods in Engineering, Vol. 47, No. 4, pp.
777-800.

Coelho, L.C.G., Jordani, C.G., Oliveira, M.C.
and Masetti, I.Q., 2003, “Equilibrium,
Ballast Control and Free-Surface Effect
Computations Using the Sstab System”,
Proceedings of the 8th International
Conference on the Stability of Ships and
Ocean Vehicles, pp. 377-389.

Everitt, C., 2001, “Interactive Order-
Independent Transparency”. Nvidia SDK
NVIDIA Corp., (http://www.nvidia.com/).

Foley, J.D., Van Dam, A., Feiner, S.K., and
Hughes, J.F., 1997, Computer Graphics:
Principles and Practice, Second Edition, C.
Addison Wesley.

IMO, 2001, Code for the Construction and
Equipment of Mobile Offshore Drilling
Units.

Rij, T. van, 1994, “Object Space versus Image
Space: A Comparison of Image Synthesis
Algorithms”, Technical Report: CS-R9426.
CWI, Department of Interactive Systems.

A
B

